ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2017-12-19
    Description: An indicator is presented to assess and monitor the good environmental status of national marine waters based on the status of commercially exploited marine fishes and invertebrates, including fully-assessed as well as data-limited stocks. The overall-indicator consists of one number per year. It summarizes the following sub-indicators: the stock size relative to the size that can produce the maximum sustainable fishing yield; the mortality caused by fishing relative to the natural rate of mortality; the mean length in the catch relative to the length where 90% of the females reach sexual maturity; and the abundance in national waters relative to mean abundance in the time series. For the example of German marine waters, the overall-indicator shows that only 3 of 19 stocks (Baltic Sea dab, North Sea plaice and North Sea sprat) were above the limit reference point for the overall indicator in 2011. North Sea herring was close to reaching the threshold, but most other stocks were still far below. Apparently fishing mortality was too high to allow recovery of more stocks to levels capable of producing the maximum sustainable yield. The chosen indicators and reference points may prove useful to other scientists tasked with assessing the environmental status of their national waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: In a recent publication (Froese et al., ICES Journal of Marine Science; doi:10.1093/icesjms/fsv122), we presented a critique of the balanced harvesting (BH) approach to fishing. A short section dealt with the size-spectrum models used to justify BH, wherein we pointed out the lack of realism of these models, which mostly represented ecosystems as consisting of a single cannibalistic species. Andersen et al. (ICES Journal of Marine Science; doi:10.1093/icesjms/fsv211) commented on our paper and suggested that we criticized size-spectrum models in general and that we supposedly made several erroneous statements. We stress that we only referred to the size-spectrum models that we cited, and we respond to each supposedly erroneous statement. We still believe that the size-spectrum models used to justify BH were highly unrealistic and not suitable for evaluating real-world fishing strategies. We agree with Andersen et al. that BH is unlikely to be a useful guiding principle for ecosystem-based fisheries management, for many reasons. The use of unrealistic models is one of them.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-11
    Description: Report about the outcome of four workshops in 2016, about the assessment of all European stocks
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-27
    Description: Since January 2014, the reformed Common Fisheries Policy (CFP) of the European Union is legally binding for all Member States. It prescribes the end of overfishing and the rebuilding of all stocks above levels that can produce maximum sustainable yields (MSY). This study examines the current status, exploitation pattern, required time for rebuilding, future catch, and future profitability for 397 European stocks. Fishing pressure and biomass were estimated from 2000 to the last year with available data in 10 European ecoregions and 2 wide ranging regions. In the last year with available data, 69% of the 397 stocks were subject to ongoing overfishing and 51% of the stocks were outside of safe biological limits. Only 12% of the stocks fulfilled the prescriptions of the CFP. Fishing pressure has decreased since 2000 in some ecoregions but not in others. Barents Sea and Norwegian Sea have the highest percentage (〉60%) of sustainably exploited stocks that are capable of producing MSY. In contrast, in the Mediterranean Sea, fewer than 20% of the stocks are exploited sustainably. Overfishing is still widespread in European waters and current management, which aims at maximum sustainable exploitation, is unable to rebuild the depleted stocks and results in poor profitability. This study examines four future exploitation scenarios that are compatible with the CFP. It finds that exploitation levels of 50–80% of the maximum will rebuild stocks and lead to higher catches than currently obtained, with substantially higher profits for the fishers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-08
    Description: This study presents a new method (LBB) for the analysis of length frequency data from commercial catches. LBB works for species that grow throughout their lives, such as most commercially-important fish and invertebrates, and requires no input in addition to length frequency data. It estimates asymptotic length, length at first capture, relative natural mortality, and relative fishing mortality. Standard fisheries equations can then be used to approximate current exploited biomass relative to unexploited biomass. In addition, these parameters allow the estimation of length at first capture that would maximize catch and biomass for a given fishing effort, and estimation of a proxy for the relative biomass capable of producing maximum sustainable yields. Relative biomass estimates of LBB were not significantly different from the “true” values in simulated data and were similar to independent estimates from full stock assessments. LBB also presents a new indicator for assessing whether an observed size structure is indicative of a healthy stock. LBB results will obviously be misleading if the length frequency data do not represent the size composition of the exploited size range of the stock or if length frequencies resulting from the interplay of growth and mortality are masked by strong recruitment pulses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: archive
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-08
    Description: This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data-limited stocks. It also presents a Bayesian state-space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch-per-unit-of-effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data-limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock–recruitment model, accounting for reduced recruitment at severely depleted stock sizes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Format: archive
    Format: archive
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  Fish and Fisheries, 17 (1). pp. 193-209.
    Publication Date: 2019-09-23
    Description: The appropriateness of three official fisheries management reference points used in the north-east Atlantic was investigated: (i) the smallest stock size that is still within safe biological limits (SSBpa), (ii) the maximum sustainable rate of exploitation (Fmsy) and (iii) the age at first capture. As for (i), in 45% of the examined stocks, the official value for SSBpa was below the consensus estimates determined from three different methods. With respect to (ii), the official estimates of Fmsy exceeded natural mortality M in 76% of the stocks, although M is widely regarded as natural upper limit for Fmsy. And regarding (iii), the age at first capture was below the age at maturity in 74% of the stocks. No official estimates of the stock size (SSBmsy) that can produce the maximum sustainable yield (MSY) are available for the north-east Atlantic. An analysis of stocks from other areas confirmed that twice SSBpa provides a reasonable preliminary estimate. Comparing stock sizes in 2013 against this proxy showed that 88% were below the level that can produce MSY. Also, 52% of the stocks were outside of safe biological limits, and 12% were severely depleted. Fishing mortality in 2013 exceeded natural mortality in 73% of the stocks, including those that were severely depleted. These results point to the urgent need to re-assess fisheries reference points in the north-east Atlantic and to implement the regulations of the new European Common Fisheries Policy regarding sustainable fishing pressure, healthy stock sizes and adult age/size at first capture.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: The approach to fisheries termed “balanced harvesting” (BH) calls for fishing across the widest possible range of species, stocks, and sizes in an ecosystem, in proportion to their natural productivity, so that the relative size and species composition is maintained. Such fishing is proposed to result in higher catches with less negative impact on exploited populations and ecosystems. This study examines the models and the empirical evidence put forward in support of BH. It finds that the models used unrealistic settings with regard to life history (peak of cohort biomass at small sizes), response to fishing (strong compensation of fishing mortality by reduced natural mortality), and economics (uniform high cost of fishing and same ex-vessel price for all species and sizes), and that empirical evidence of BH is scarce and questionable. It concludes that evolutionary theory, population dynamics theory, ecosystem models with realistic assumptions and settings, and widespread empirical evidence do not support the BH proposal. Rather, this body of evidence suggests that BH will not help but will hinder the policy changes needed for the rebuilding of ecosystems, healthy fish populations, and sustainable fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-19
    Description: There is a recognized need for new methods with modest data requirements to provide preliminary estimates of stock status for data-limited stocks (e.g. Rudd and Thorson, 2018). Froese et al. (2018) provide such a method, which derives estimates of relative stock size from length frequency (LF) data of exploited stocks. They show that their length-based Bayesian biomass estimation method (LBB) can reproduce the “true” parameters used in simulated data and can approximate the relative stock size as estimated independently by more data-demanding methods in 34 real stocks. However, in a comment on LBB, Hordyk et al. (2019) claim (i) that the master equation of LBB is incomplete because it does not correct for the pile-up effect caused by aggregating length measurements into length classes or “bins”, (ii) that LBB is highly sensitive to equilibrium assumptions and wrongly uses maximum observed length (Lmax) for guidance in setting a prior for the estimation of asymptotic length (Linf), and (iii) that the default prior used by LBB for the ratio between natural mortality and somatic growth rate (M/K) of 1.5 (SD = 0.15) is inadequate for many exploited species. These comments are addressed below
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: archive
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-03
    Description: The Law of the Sea as well as regional and national laws and agreements require exploited populations or stocks to be managed so that they can produce maximum sustainable yields. However, exploitation level and stock status are unknown for most stocks because the data required for full stock assessments are missing. This study presents a new method (AMSY) that estimates relative population size when no catch data are available using time-series of catch-per-unit-effort or other relative abundance indices as the main input. AMSY predictions for relative stock size were not significantly different from the “true” values when compared with simulated data. Also, they were not significantly different from relative stock size estimated by data-rich models in 88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed the suitability of the method and led to the first assessments for 23 species. Given the lack of catch data as input, AMSY estimates of exploitation come with wide margins of uncertainty which may not be suitable for management. However, AMSY seems to be well suited for estimating productivity as well as relative stock size and may, therefore, aid in the management of data-poor stocks.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...