ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-041X
    Keywords: Key words Ascidian ; Serine protease ; Differential display ; Gene expression ; In situ hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We have studied gene expression during ascidian embryonic development using the technique of differential display and isolated partial cDNA sequences of 12 genes. Developmental regulation of these genes has been confirmed by northern hybridization analysis. Further cDNA cloning and sequence analysis of an mRNA that is present during gastrulation, neurulation and tailbud formation reveals that it encodes a novel serine protease containing a single kringle motif and catalytic domain. The spatial expression of this gene, designated Hmserp1, is restricted to precursor cells of the epidermis. The structure and expression of Hmserp1 is discussed in relation to possible functions during development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-041X
    Keywords: Chymotrypsin ; Larva ; Metamorphosis Mollusc ; In situ hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the non-feeding larva of the marine gastropod, Haliotis rufescens, gut morphogenesis is initiated at metamorphosis. Intestine-specific chymotrypsin gene expression begins in amoebocytes located in the dorsoposterior region of the undifferentiated digestive gland prior to metamorphosis, 5 d post-fertilization. Transcript accumulates steadily in these cells over the next 6 d while the amoebocytes migrate slowly dorsally. Induction of metamorphosis dramatically accelerates the rates of chymotrypsin mRNA accumulation and amoebocyte migration, and is required for homing of the amoebocytes to the hindgut region. Induction of chymotrypsin gene expression occurs only in larvae that had developed competence to recognize an exogenous morphogenetic cue and initiate metamorphosis, with a more pronounced increase in chymotrypsin mRNA accumulation in occurring older larvae. Chymotrypsin mRNA accumulation patterns suggest that hindgut cell specification occurs prior to metamorphosis, but that completion of the morphogenetic program requires signaling events associated with metamorphosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 32 (1989), S. 1354-1359 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1436-2236
    Keywords: Key words:Penaeus monodon, shrimp, chitinase, gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract: We have isolated a full-length chitinase complementary DNA from the tiger shrimp Penaeus monodon that encodes a 621 amino acid protein possessing the functional domains of the chitinase protein family. The Penaeus monodon chitinase 1 (PmChi-1) gene product is 81.8% identical to a chitinase 1 protein expressed in the hepatopancreas of Penaeus japonicus. Analysis by reverse transcription–polymerase chain reaction (RT-PCR) indicates that PmChi-1 messenger RNA is detectable in the hepatopancreas and the gut. PmChi-1 expression during the molt cycle fluctuates markedly, with lowest mRNA levels at stages A1, C, and D3; there is a dramatic increase in transcript abundance at the D2 stage. Using the same tissues and molt stages, RT-PCR analyses of genes encoding other digestive enzymes (trypsin, chymotrypsin, and cathepsin L), a muscle structural protein (tropomyosin II), and housekeeping proteins (elongation factor II and GTP-binding protein) indicate that PmChi-1 is expressed in a distinct tissue-specific and stage-specific manner. The other digestive enzyme genes are expressed in a similar spatiotemporal pattern, but none exhibited a dramatic increase in transcript abundance at stage D2. Increased expression of PmChi-1 at D2 suggests that hepatopancreas-expressed chitinase is involved in the degradation of endogenous chitin in the gut peritrophic membrane prior to molting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Marine biotechnology 2 (2000), S. 545-557 
    ISSN: 1436-2236
    Keywords: Key words:POU, Sox, Pax, ganglia, mollusk, lophotrochozoan.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract: In gastropod mollusks, neuroendocrine cells in the anterior ganglia have been shown to regulate growth and reproduction. As a first step toward understanding the molecular mechanisms underlying the regulation of these physiological processes in the tropical abalone Haliotis asinina, we have identified sets of POU, Sox, and Pax transcription factor genes that are expressed in these ganglia. Using highly degenerate oligonucleotide primers designed to anneal to conserved codons in each of these gene families, we have amplified by reverse transcriptase polymerase chain reaction 2 POU genes (HasPOU-III and HasPOU-IV), 2 Sox genes (HasSox-B and HasSox-C), and two Pax genes (HasPax-258 and HasPax-6). Analyses with gene-specific primers indicated that the 6 genes are expressed in the cerebral and pleuropedal ganglia of both reproductively active and spent adults, in a number of sensory structures, and in a subset of other adult tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-25
    Description: An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes underlying molluscan shell formation may be applied more broadly to understanding the evolution of metazoan biomineralization.
    Keywords: Biomineralization; Mollusc; Mantle; Shell; Shell matrix proteins; Co-option; Lineage-specific novelties; Repetitive low complexity domain ; 551
    Language: English , English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-29
    Description: Background: Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks.
    Description: Results: Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl) deposition.
    Description: research
    Keywords: 560 ; VV 000 ; Paläontologie
    Language: English
    Type: article , publishedVersion
    Format: 10 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-29
    Description: Introduction Inter-specific comparisons of metazoan developmental mechanisms have provided a wealth of data concerning the evolution of body form and the generation of morphological novelty. Conversely, studies of intra-specific variation in developmental programs are far fewer. Variation in the rate of development may be an advantage to the many marine invertebrates that posses a biphasic life cycle, where fitness commonly requires the recruitment of planktonically dispersing larvae to patchily distributed benthic environments. Results We have characterised differences in the rate of development between individuals originating from a synchronised fertilisation event in the tropical abalone Haliotis asinina, a broadcast spawning lecithotrophic vetigastropod. We observed significant differences in the time taken to complete early developmental events (time taken to complete third cleavage and to hatch from the vitelline envelope), mid-larval events (variation in larval shell development) and late larval events (the acquisition of competence to respond to a metamorphosis inducing cue). We also provide estimates of the variation in maternally provided energy reserves that suggest maternal provisioning is unlikely to explain the majority of the variation in developmental rate we report here. Conclusions Significant differences in the rates of development exist both within and between cohorts of synchronously fertilised H. asinina gametes. These differences can be detected shortly after fertilisation and generate larvae of increasingly divergent development states. We discuss the significance of our results within an ecological context, the adaptive significance of mechanisms that might maintain this variation, and potential sources of this variation.
    Description: Open-Access-Publikationsfonds 2012
    Keywords: 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-25
    Description: Background: Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks.Results: Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl) deposition.
    Keywords: 551 ; VU 000
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...