ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Bulletin of the Seismological Society of America, Warszawa, Zaklad Geofizyki Polskiej Akademii Nauk, vol. 96, no. 3, pp. 1140-1158, pp. 2012, (ISSN: 1340-4202)
    Publication Date: 2006
    Keywords: Seismology ; Source parameters ; Error analysis ; Fault plane solution, focal mechanism ; Location ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Warszawa, Zaklad Geofizyki Polskiej Akademii Nauk, vol. 107, no. B4, pp. ESE 2-1 to ESE 2-14, pp. 2060, (ISSN: 1340-4202)
    Publication Date: 2002
    Keywords: Aftershocks ; Stress ; Friction ; Rock mechanics ; 7209 ; Seismology: ; Earthquake ; dynamics ; and ; mechanics ; 7215 ; parameters ; 7230 ; Seismicity ; and ; seismotectonics ; 7260 ; Theory ; and ; modeling ; Seismicity ; JGR
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Warszawa, Zaklad Geofizyki Polskiej Akademii Nauk, vol. 108, no. B1, pp. ESE 3-1 to ESE 3-7, pp. 2012, (ISSN: 1340-4202)
    Publication Date: 2003
    Keywords: Stress ; Coulomb ; Dynamic ; Earthquake ; SAF ; USA ; JGR ; 7209 ; Seismology: ; Earthquake ; dynamics ; and ; mechanics ; 7215 ; Earthquake ; parameters ; 7230 ; Seismicity ; and ; seismotectonics ; 7260 ; Theory ; and ; modeling
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-01
    Description: Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea Nature Geoscience 4, 486 (2011). doi:10.1038/ngeo1184 Authors: Daniel Brothers, Debi Kilb, Karen Luttrell, Neal Driscoll & Graham Kent
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-14
    Description: To better understand earthquake source processes involved in dynamically triggering remote aftershocks, we use data from the EarthScope Transportable Array (TA) that provide uniform station sampling, similar recording capabilities, large spatial coverage, and in many cases, repeat sampling at each site. To avoid spurious detections, which are an inevitable part of automated time-domain amplitude threshold detection methods, we develop a frequency domain earthquake detection algorithm that identifies coherent signal patterns through array visualization. This method is tractable for large datasets, ensures robust catalogs, and delivers higher resolution observations than what are available in current catalogs. We explore seismicity rate changes local to the TA stations following 18 global mainshocks (M ≥ 7) that generate median peak dynamic stress amplitudes of 0.001- 0.028 MPa across the array. From these mainshocks, we find no evidence of prolific or widespread remote dynamic triggering in the continental U.S. within the mainshock's wavetrain or following mainshock stress transients within 2 days. However, limited evidence for rate increases exist in localized source regions. These results suggest that for these data, prolific, remote earthquake triggering is a rare phenomenon throughout a wide range of observable magnitudes. We further conclude that within the lower range of previously reported triggering thresholds, surface wave amplitude does not correlate well with observed cases of dynamic triggering. We propose that other characteristics of the triggering wavefield, in addition to specific conditions at the site, will drive the occurrence of triggering at these amplitudes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-01
    Description: INTRODUCTION TO SeisSound VIDEO PRODUCTS The increased popularity of YouTube videos has changed the format of how information is distributed and assimilated, highlighting the importance of including auditory information in videos. Videos that include sound also permeate the research community, as evidenced by their recent increase within online supplements to journal articles. Tapping into this new approach of information exchange, we are creating videos of seismic data that augment visual imagery with auditory counterparts. We term these “SeisSound” video products (Figure 1). We find the richness and complexities of seismic data can more easily be appreciated using these SeisSound products than using just the individual visual or the auditory components independently. Seismology includes the study of a large number of processes that affect the spectral content of a seismogram including spatial extent, duration, and directivity of a source; path effects such as attenuation, near-surface geology, and basin resonance; and the differences between abrupt tectonic earthquakes and unusual sources such as volcanic and non-volcanic tremor. With training, we can learn to discern the seismic signatures of these different processes, which can be inferred from the spectral content from time series, spectra, and spectrograms; however, subtle differences in these signals can be difficult to convey easily to a less experienced audience. A number of our senses include the ability to act as spectral analyzers. In the audible sound range we hear pitch, in the visible light range we see color, and in the low- and sub-audible range we can feel the difference between sudden and slow motions using our senses of motion and touch. For most people, the concepts of high or low pitch (frequency) and volume (amplitude) are innate. When we listen to a symphony orchestra, we can pick out the sound of individual...
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-01
    Description: INTRODUCTION The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ~8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ~3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan. As seismologists, it is important that we effectively convey information about catastrophic earthquakes, like this recent Japan event, to others who may not necessarily be well versed in the language and methods of earthquake seismology. Until recently, it was typical to only use “snapshot” static images to represent earthquake data. From these static images alone it was often difficult to explain even the basic characteristics of seismic waves generated by earthquakes, such as primary (P), secondary...
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Seasonal lake Gornersee forms at the confluence of Gornergletscher and Grenzgletscher, Switzerland, and experiences outburst floods annually in midsummer. To study the interplay between lake drainage, glacier movement and crevasse activity, high-frequency seismometers and GPS receivers were deployed in networks near Gornersee during the summer ablation seasons of 2004, 2006 and 2007. We use a Rayleigh wave coherence method to locate 3289, 7939 and 4087 icequakes, respectively, primarily along well-defined surface crevasses. We calculate two-dimensional strains from triads of GPS stations and find mean differential strain rates of ~300 × 10〈span〉−6〈/span〉 d〈span〉−1〈/span〉 with diurnal variations up to 800 × 10〈span〉−6〈/span〉 d〈span〉−1〈/span〉. Crevasse icequake activity and glacial velocity are highest during early season, then decrease as meltwater channels erode and subglacial water pressure decreases. Glacial response to Gornersee drainage varied year-to-year, with icequake activity promoted at some crevasses and inhibited at others, suggesting syn-drainage icequakes may be indicative of local drainage patterns and small-scale features of the stress field. Diurnal pulses in icequake activity exhibit peak activity at different times of day in different locations, coincident with a southeast-to-northwest trending concentrated shear zone near the Gornergletscher–Grenzgletscher confluence, likely due to differences in the timing of peak strain rate in these regions.〈/p〉〈/div〉
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-01
    Description: Kappa is a one-parameter estimator of the spectral amplitude decay with frequency of a seismogram. Low values (~5??ms) indicate limited attenuation of high-frequency energy whereas higher values (~40??ms) indicate high-frequency energy has been removed. Kappa is often assumed to be a site term and used in seismic designs. We address two key questions about kappa: (1) how to identify source, path, and site contributions to kappa; and (2) can kappa estimates from smaller earthquakes, and more readily accessible weak-motion recordings, be reasonably extrapolated to estimate kappa of larger earthquakes? The use of small earthquakes (ML 3.5 earthquakes inside the network. We find kappa from small earthquakes predicts the relative values of kappa for larger earthquakes (e.g., measurements at stations PFO and KNW are small compared with those at stations TRO and SND). For the SND and TRO data, however, kappa values from small earthquakes overpredict those from moderate and large earthquakes. Site effects are the most important contributor to kappa estimates, but the scatter within kappa measurements at a given station is likely caused by a significant contribution from near the source, perhaps related to near-source scattering. Because of this source-side variability, care is recommended in using individual small events as Green’s functions to study source-time effects of moderate and large events.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-23
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...