ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 9 (2013): 2073-2084, doi:10.5194/cp-9-2073-2013.
    Description: The overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow.
    Description: Funding was provided by NERC RAPID grant NER/T/S/2002/00436 to I. N. McCave, and a WHOI OCCI post-doctoral scholarship to D. J. R. Thornalley. Work on EW9302 cores was supported by NSF grant OCE01- 18001 to D. W. Oppo and J. F. McManus. The contributions of J. F. McManus and S. Praetorius were also supported in part by the Comer Research and Education Foundation. M. Blaschek,F. J. Davies and H. Renssen are supported by the European Community’s 7th Framework Programme FP7 2007/2013, Marie-Curie Actions, under Grant Agreement No. 10 238111 CASE ITN.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-03
    Description: The overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-11
    Description: Since the start of the Holocene, temperatures in the Arctic have steadily declined. This has been accredited to the orbitally forced decrease in summer insolation reconstructed over the same period. However, we present climate modelling results here that indicate that up to 42% of the cooling in the Arctic, over the period 9–0 ka was a direct result of the desertification that occurred in the Sahara. Through a land–atmosphere teleconnection, increasing surface albedo in the Sahara leads to a regional increase in surface pressure, a weakening of the trade winds, the westerlies and the polar easterlies, which in turn reduces the meridional heat transported by the atmosphere to the Arctic. Additionally, through a series of targeted sensitivity experiments we explored the affects that using a modern cloud data set has upon mid and early Holocene climate simulations, and show that despite an apparent weakness in our model our original conclusions are robust. We conclude that interglacial climate is sensitive to changes in Sahara vegetation type, which has significance in the future debate of the response of the Sahara to climate change, considering the uncertainty surrounding future precipitation projections for this region.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-27
    Description: Since the start of the Holocene, temperatures in the Arctic have steadily declined. This has been accredited to the orbitally forced decrease in summer insolation reconstructed over the same period. However, here we present climate modelling results from an Earth model of intermediate complexity (EMIC) that indicate that 17–40% of the cooling in the Arctic, over the period 9–0 ka, was a direct result of the desertification that occurred in the Sahara after the termination of the African Humid Period. We have performed a suite of sensitivity experiments to analyse the impact of different combinations of forcings, including various vegetation covers in the Sahara. Our simulations suggest that over the course of the Holocene, a strong increase in surface albedo in the Sahara as a result of desertification led to a regional increase in surface pressure, a weakening of the trade winds, the westerlies and the polar easterlies, which in turn reduced the meridional heat transported by the atmosphere to the Arctic. We conclude that during interglacials, the climate of the Northern Hemisphere is sensitive to changes in Sahara vegetation type.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-26
    Description: The overflow of deep water from the Nordic Seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland basin. Our results reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic Seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice-sheets, the decline throughout the last 7000 yr was caused by an orbitally-induced increase in the amount of Arctic sea-ice entering the Nordic Seas. Although the flux of Arctic sea-ice to the Nordic Seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic Seas, will result in reduced deep convection, likely driving a weaker I–S overflow.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...