ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-12-01
    Print ISSN: 0048-9697
    Electronic ISSN: 1879-1026
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-14
    Description: Three naturally intact wetland systems (swamps) were characterized based on sediment cores, analysis of surface water, groundwater and porewater stable isotopes. These swamps are classified as temperate highland peat swamps on sandstone (THPSS) and in Australia they are listed as threatened ecological communities. This study is the first application of the stable isotope direct vapour equilibration method in a wetland, enabling quantification of the contributions of evaporation, rainfall and groundwater to swamp water balance. This technique enables understanding of the depth of evaporative losses and the relative importance of groundwater flow within the swamp environment without the need for intrusive piezometer installation at multiple locations and depths. Additional advantages of the stable isotope direct vapour equilibration technique include detailed spatial and vertical depth profiles of δ18O and δ2H, with good accuracy comparable to the porewater compression technique. Depletion of δ18O and δ2H in porewater with increasing depth (to around 40–60cm depth) was observed in two swamps, but remained uniform with depth in the third swamp. Within the upper surficial zone, the measurements respond to seasonal trends and are subject to evaporation in the capillary zone. Below this depth the pore water δ18O and δ2H signature approaches that of groundwater indicating lateral groundwater contribution. Significant differences were found in stable pore water isotopes for samples collected after dry weather period compared to wet periods where recharge of depleted rainfall was apparent. The organic rich soil in the upper 40–60cm retains significant saturation following precipitation events and maintains moisture necessary for ecosystem functioning. An important finding for wetland and ecosystem response to changing groundwater conditions (and potential ground movement) are the observations that basal sands underlay the swamps, allowing relatively rapid drainage at the base of the swamp and interaction with lateral groundwater contribution. Based on the novel stable isotope direct vapour equilibration analysis of swamp sediment, our study identified the following important processes: rapid infiltration of rainfall to the water table with longer retention of moisture in the upper 40–60cm and lateral groundwater flow contribution at the base. This study also found, that evaporation estimated using stable isotope direct vapour equilibration method is more realistic compared to reference evapotranspiration (ET). Importantly, if swamp discharge data were available in combination with pore water isotope profiles, an appropriate transpiration could be determined for these swamps. Based on the results, the groundwater contribution to the swamp is a significant component of the water balance during dry period. Our methods could complement other monitoring studies and numerical water balance models to improve prediction of the hydrological response of the swamp to changes in water conditions due to natural or anthropogenic influences.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-26
    Description: Three naturally intact wetland systems (swamps) were characterised based on sediment cores, analysis of surface water, swamp groundwater, regional groundwater and pore water stable isotopes. These swamps are classified as temperate highland peat swamps on sandstone (THPSS) and in Australia they are listed as threatened endangered ecological communities under state and federal legislation. This study applies the stable isotope direct vapour equilibration method in a wetland, aiming at quantification of the contributions of evaporation, rainfall and groundwater to swamp water balance. This technique potentially enables understanding of the depth of evaporative losses and the relative importance of groundwater flow within the swamp environment without the need for intrusive piezometer installation at multiple locations and depths. Additional advantages of the stable isotope direct vapour equilibration technique include detailed spatial and vertical depth profiles of δ18O and δ2H, with good accuracy comparable to other physical and chemical extraction methods. Depletion of δ18O and δ2H in pore water with increasing depth (to around 40–60 cm depth) was observed in two swamps but remained uniform with depth in the third swamp. Within the upper surficial zone, the measurements respond to seasonal trends and are subject to evaporation in the capillary zone. Below this depth the pore water δ18O and δ2H signature approaches that of regional groundwater, indicating lateral groundwater contribution. Significant differences were found in stable pore water isotope samples collected after the dry weather period compared to wet periods where recharge of depleted rainfall (with low δ18O and δ2H values) was apparent. The organic-rich soil in the upper 40 to 60 cm retains significant saturation following precipitation events and maintains moisture necessary for ecosystem functioning. An important finding for wetland and ecosystem response to changing swamp groundwater conditions (and potential ground movement) is that basal sands are observed to underlay these swamps, allowing relatively rapid drainage at the base of the swamp and lateral groundwater contribution. Based on the novel stable isotope direct vapour equilibration analysis of swamp sediment, our study identified the following important processes: rapid infiltration of rainfall to the water table with longer retention of moisture in the upper 40–60 cm and lateral groundwater flow contribution at the base. This study also found that evaporation estimated using the stable isotope direct vapour equilibration method is more realistic compared to reference evapotranspiration (ET). Importantly, if swamp discharge data were available in combination with pore water isotope profiles, an appropriate transpiration rate could be determined for these swamps. Based on the results, the groundwater contribution to the swamp is a significant and perhaps dominant component of the water balance. Our methods could complement other monitoring studies and numerical water balance models to improve prediction of the hydrological response of the swamp to changes in water conditions due to natural or anthropogenic influences.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...