ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The temperature dependence of C3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity (Vcmax) and the potential rate of electron transport (Jmax). Original data sets were used for this review, as it is shown that derived values of Vcmax and its temperature response depend strongly on assumptions made in derivation. Values of Jmax and Vcmax at 25 °C varied considerably among species but were strongly correlated, with an average Jmax : Vcmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the Jmax : Vcmax ratio declined strongly with measurement temperature. The relative temperature responses of Jmax and Vcmax were relatively constant among tree species. Activation energies averaged 50 kJ mol−1 for Jmax and 65 kJ mol−1 for Vcmax, and for most species temperature optima averaged 33 °C for Jmax and 40 °C for Vcmax. However, the cold climate tree species had low temperature optima for both Jmax(19 °C) and Vcmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both Jmax and Vcmax, implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We assessed the effects of irradiance received during growth on the vulnerability of Fagus sylvatica L. xylem vessels to water-stress-induced embolism. The measurements were conducted on (1) potted saplings acclimated for 2 years under 100% and 12% incident global radiation and (2) branches collected from sun-exposed and shaded sides of adult trees. Both experiments yielded similar results. Light-acclimated shoots were less vulnerable to embolism. Xylem water potential levels producing 50% loss of hydraulic conductivity were lower in sun-exposed branches and seedlings than in shade-grown ones (–3·0 versus –2·3 MPa on average). The differences in vulnerability were not correlated with differences in xylem hydraulic conductivity nor vessel diameter. Resistance to cavitation was correlated with transpiration rates, midday xylem and leaf water potentials in adult trees. We concluded that vulnerability to cavitation in Fagus sylvatica may acclimate to contrasting ambient light conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The two most common oak species in western Europe, Quercus robur and Quercus petraea, display different ecological behaviours, particularly with respect to their responses to drought. The ecophysiological basis of this niche difference is not understood well. Here we test the hypothesis that these two species present distinct water use efficiencies (WUEs), using the carbon isotope discrimination approach. Leaves and 13 dated ring sequences were sampled in 10 pairs of adult trees growing side by side. Carbon isotope composition was measured on cellulose extracts. In addition, relationships between carbon isotope discrimination and wood anatomy were assessed at the tree level. Quercus robur displayed a 1·0‰ larger isotopic discrimination than Q. petraea, and therefore a lower intrinsic WUE (−13%). This interspecific difference of isotopic discrimination was quite stable with time and independent of tree radial growth and climate fluctuations. A strong positive correlation was observed between average tree values of earlywood vessel surface area and 13C isotopic discrimination. This correlation was even higher with 13C of the 1976 dry year (r = 0·86). These observations led to the hypothesis that hydraulic properties of xylem could exert a constraint on leaf gas exchange, resulting in a larger WUE for individuals with smaller vessel cross-section area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Adult trees of Quercus petraea were submitted to controlled water shortage in a natural stand near Nancy, France. Diurnal course of net CO2 assimilation rate (A) was measured in situ together with chlorophyll a fluorescence determined on dark adapted leaves. In 1990, trees experienced a strong water stress, with predawn and midday leaf water potentials below –2·0 and –3·0 MPa, respectively. Diurnal course of A of well-watered trees exhibited sometimes important midday decreases in A related to high temperature and vapour pressure deficit. Decreases in initial (Fo) and maximal (Fm) fluorescence and sometimes in photochemical efficiency of photosystem II (Fv/Fm) were observed and probably revealed the onset of mechanisms for thermal de-excitation. These mechanisms were shown to be sensitive to dithiothreitol. All these effects were reversible and vanished almost completely overnight. Therefore, they may be considered as protective mechanisms adjusting activity of photosystem II to the electron requirement for photosynthesis. Water stress amplified these reactions: A was strongly decreased, showing important midday depression; diurnal reductions in Fm and Fv/Fm were enhanced. The same trends were observed during summer 1991, despite a less marked drought. These protective mechanisms seemed very effective, as no photoinhibitory damage to PS II could be detected in either water stressed or control trees.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Comprehensive studies on the processes involved in photosynthetic acclimation after a sudden change in light regime are scarce, particularly for trees. We tested (i) the ability of photosynthetic acclimation in the foliage of walnut trees growing outdoors after low-to-high and high-to-low light transfers made early or late in the vegetation cycle, and (ii) the relative importance of changes in total leaf nitrogen versus changes in the partitioning of leaf nitrogen between the different photosynthetic functions during a 2 month period after transfer. Changes in maximum carboxylation rate, light-saturated electron transport rate, respiration rate, total leaf nitrogen, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and total chlorophylls were surveyed before and after the change in light regime. Respiration rate acclimated fully within 1 week of transfer, and full acclimation was observed 1 month after transfer for the amount of Rubisco. In contrast, total nitrogen and photosynthetic capacity acclimated only partially during the 2 month period. Changes in photosynthetic capacity were driven by changes in both total leaf nitrogen and leaf nitrogen partitioning. The extent of acclimation also depended strongly on leaf age at the time of the change in light regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Diurnal time courses of net CO2 assimilation rates, stomatal conductance and light-driven electron fluxes were measured in situ on attached leaves of 30-year-old Turkey oak trees (Quercus cerris L.) under natural summer conditions in central Italy. Combined measurements of gas exchange and chlorophyll a fluorescence under low O2 concentrations allowed the demonstration of a linear relationship between the photochemical efficiency of PSII (fluorescence measurements) and the apparent quantum yield of gross photosynthesis (gas exchange). This relationship was used under normal O2 to compute total light-driven electron fluxes, and to partition them into fractions used for RuBP carboxylation or RuBP oxygenation. This procedure also yielded an indirect estimate of the rate of photorespiration in vivo. The time courses of light-driven electron flow, net CO2 assimilation and photorespiration paralleled that of photosynthetic photon flux density, with important afternoon deviations as soon as a severe drought stress occurred, whereas photochemical efficiency and maximal fluorescence underwent large but reversible diurnal decreases. The latter observation indicated the occurrence of a large non-photochemical energy dissipation at PSII. We estimated that less than 60% of the total photosynthetic electron flow was used for carbon assimilation at midday, while about 40% was devoted to photorespiration. The rate of carbon loss by photorespiration (R1) reached mean levels of 56% of net assimilation rates. The potential application of this technique to analysis of the relative contributions of thermal de-excitation at PSII and photorespiratory carbon recycling in the protection of photosynthesis against stress effects is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Planta 146 (1979), S. 31-39 
    ISSN: 1432-2048
    Keywords: Autoradiography ; Calcium ; Mougeotia ; Phytochrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ca2+ is proposed to function as a messenger in such phytochrome-mediated responses as localized cell growth, intracellular movements, and control of plasma membrane properties. To test this hypothesis, the uptake of Ca2+ in irradiated and non-irradiated regions of individual threads of the green alga Mougeotia was studied with the aid of 45Ca2+ and low temperature autoradiography: 10–20 cells within 40–60 cell-long threads were irradiated for up to 1 min, transferred to darkness for 3 to 10 min, submersed in a radioactive medium for 1 min, washed in an unlabelled medium for 30 min, and then autoradiographed at-80° C for several days. The autoradiographs show that those cells which had been pre-irradiated with red light did take up 2–10 times more Ca2+ than the adjacent non-irradiated cells of the same thread. Cells pre-irradiated with farred light or red light followed by far-red light showed no enhanced uptake of Ca2+. These results might be interpreted to indicate, firstly, that phytochrome-Pfr is involved in the enhanced uptake of Ca2+ and secondly, that the accumulation of radioactive Ca2+ in red light irradiated cells is an expression of an increased intracellular concentration of Ca2+. This interpretation is based on the data that (i) the dark interval between irradiation and labelling precluded the involvement of photosynthesis, (ii) the effect of red light was reversible with far-red light, and (iii) the accumulation of Ca2+ persisted during the long wash-out period. We speculate, that the red light-enhanced accumulation of Ca2+ in Mougeotia cells is caused by a Pfr-mediated increase of the Ca-permeability of the plasma membrane, and perhaps by a Pfr-impeding of an active Ca2+-extrusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: chlorophyll fluorescence ; fertilisation ; calcium ; magnesium ; mineral nutrition ; photosystem II ; spruce ; stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Severely yellowed ten-year-old spruce trees growing in the Vosges Mountains on an acidic soil were fertilised with Magnesium lime during the spring of 1990. The effects of this treatment were assessed 18 months later. A very significant improvement of the mineral status of the trees was detected, with increasing Mg contents in the needles, and as a consequence, reduced yellowing and improved chlorophyll content. Only slight differences with control trees were observed for height increase. Effects of this improved nutrition on photosynthesis were tested measuring net CO2 assimilation rates and chlorophyll a fluorescence. Light-saturated net assimilation rates of current-year needles were high, reaching 5.3 μmol m−2 s−1 on a total needle area basis. The improvement in chlorophyll and Mg content had no significant effect on net assimilation rates or on any parameter describing photochemical functions of both current-and previous-year needles. Despite the strong inter-individual variability in needle chlorophyll and Mg contents (ranging from 0.2 to 0.8 mg g−1 fresh weight, and 0.05 to 0.5 mg g-1 dry weight respectively), photochemical efficiency of PS II under limiting irradiance only decreased significantly on older needles displaying Mg contents below 0.1 mg g−1. It is concluded from these results that spruce trees exhibit a high degree of plasticity with regard to Mg deficiency on acidic soils, and that improved Mg nutrition and increased chlorophyll content do not necessarily improve photosynthesis and height growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 19 (1984), S. 1089-1098 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Low-carbon unalloyed steel has been investigated after nitriding accomplished by either the salt-bath method (Tenifer) or the gas method (Nitroc). The resulting changes in the mechanical properties are reported in this paper, while changes in positron annihilation parameters are reported in Part 2. The mechanical properties show that the increase in both the lower yield stress and the ultimate stress is influenced greatly by the cooling rate after nitriding. A rapid cooling rate resulted in an increase of ∼200 MPa while an increase of only 55 Mpa was observed for a slow cooling rate. These increases proved independent of prior straining in the range 0 to 20%, showing that the nitrogen uptake is not significantly influenced by internal defects. Annealing of rapidly cooled nitrided specimens resulted in a maximum of both the lower yield stress and the ultimate yield stress around 100° C. A transition from brittle to ductile fracture around this temperature was also observed. A large recovery of elongation to fracture was obtained after annealing at 140° C, which was not accompanied by any significant decrease in the lower yield stress. Dilatometer measurements indicated two precipitation stages, one around room temperature and another around 100° C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 105 (1936), S. 282-286 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...