ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 712 (1994), S. 0 
    ISSN: 1749-6632
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Allgemeine Naturwissenschaft
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 70 (1966), S. 347-351 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 9 (2003), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Forest soils, rather than woody biomass, are the dominant long-term sink for N in forest fertilization studies and, by inference, for N from atmospheric deposition. Recent evidence of significant abiotic immobilization of inorganic-N in forest humus layers challenges a previously widely held view that microbial processes are the dominant pathways for N immobilization in soil. Understanding the plant, microbial, and abiotic mechanisms of N immobilization in forest soils has important implications for understanding current and future carbon budgets. Abiotic immobilization of nitrate is particularly perplexing because the thermodynamics of nitrate reduction in soils are not generally favorable under oxic conditions. Here we present preliminary evidence for a testable hypothesis that explains abiotic immobilization of nitrate in forest soils. Because iron (and perhaps manganese) plays a key role as a catalyst, with Fe(II) reducing nitrate and reduced forms of carbon then regenerating Fe(II), we call this ‘the ferrous wheel hypothesis’. After nitrate is reduced to nitrite, we hypothesize that nitrite reacts with dissolved organic matter through nitration and nitrosation of aromatic ring structures, thus producing dissolved organic nitrogen (DON). In addition to ignorance about mechanisms of DON production, little is known about DON dynamics in soil and its fate within ecosystems. Evidence from leaching and watershed studies suggests that DON production and consumption may be largely uncoupled from seasonal biological processes, although biological processes ultimately produce the DOC and reducing power that affect DON formation and the entire N cycle. The ferrous wheel hypothesis includes both biological and abiological processes, but the reducing power of plant-derived organic matter may build up over seasons and years while the abiotic reduction of nitrate and reaction of organic matter with nitrite may occur in a matter of seconds after nitrate enters the soil solution.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Global warming and changes in rainfall amount and distribution may affect soil respiration as a major carbon flux between the biosphere and the atmosphere. The objectives of this study were to investigate the site to site and interannual variation in soil respiration of six temperate forest sites. Soil respiration was measured using closed chambers over 2 years under mature beech, spruce and pine stands at both Solling and Unterlüß, Germany, which have distinct climates and soils. Cumulative annual CO2 fluxes varied from 4.9 to 5.4 Mg C ha−1 yr−1 at Solling with silty soils and from 4.0 to 5.9 Mg C ha−1 yr−1 at Unterlüß with sandy soils. With one exception soil respiration rates were not significantly different among the six forest sites (site to site variation) and between the years within the same forest site (interannual variation). Only the respiration rate in the spruce stand at Unterlüß was significant lower than the beech stand at Unterlüß in both years. Soil respiration rates of the sandy sites at Unterlüß were limited by soil moisture during the rather dry and warm summer 1999 while soil respiration at the silty Solling site tended to increase. We found a threshold of −80 kPa at 10 cm depth below which soil respiration decreased with increasing drought. Subsequent wetting of sandy soils revealed high CO2 effluxes in the stands at Unterlüß. However, dry periods were infrequent, and our results suggest that temporal variation in soil moisture generally had little effect on annual soil respiration rates. Soil temperature at 5 cm and 10 cm depth explained 83% of the temporal variation in soil respiration using the Arrhenius function. The correlations were weaker using temperature at 0 cm (r2 = 0.63) and 2.5 cm depth (r2 = 0.81). Mean Q10 values for the range from 5 to 15 °C increased asymptotically with soil depth from 1.87 at 0 cm to 3.46 at 10 cm depth, indicating a large uncertainty in the prediction of the temperature dependency of soil respiration. Comparing the fitted Arrhenius curves for same tree species from Solling and Unterlüß revealed higher soil respiration rates for the stands at Solling than in the respective stands at Unterlüß at the same temperature. A significant positive correlation across all sites between predicted soil respiration rates at 10 °C and total phosphorus content and C-to-N ratio of the upper mineral soil indicate a possible effect of nutrients on soil respiration.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 5 (1999), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: The future flora of Amazonia will include significant areas of secondary forest as degraded pastures are abandoned and secondary succession proceeds. The rate at which secondary forests regain carbon (C) stocks and re-establish biogeochemical cycles that resemble those of primary forests will influence the biogeochemistry of the region. Most studies have focused on the effects of deforestation on biogeochemical cycles. In this study, we present data on the recuperation of carbon stocks and carbon fluxes within a secondary forest of the eastern Amazon, and we compare these measurements to those for primary forest, degraded pasture, and productive pasture. Along a transect from a 23-y-old degraded pasture, through a 7-y-old secondary forest, through a 16-year-old secondary forest, and to a primary forest, the δ13C values of soil organic matter (SOM) in the top 10 cm of soil were – 21.0, – 26.5, – 27.4, and – 27.9‰, respectively, indicating that the isotopic signature of SOM from C3 forest plants was rapidly re-established. The degraded pasture also had significant inputs of C from C3 plants. Radiocarbon data indicated that most of the C in the top 10 cm of soil had been fixed by plants during the last 30 years. Differences in soil C inventory among land use types were small compared to uncertainties in their measurement. Root inputs were nearly identical in primary and secondary forests, and litterfall in the secondary forest was 88% of the litterfall rate of the primary forest. In contrast, the secondary forest had only 17% of the above ground biomass. Because of rapid cycling rates of soil C and rapid recovery of C fluxes to and from the soil, the below ground C cycle in this secondary forest was nearly identical with those of the unaltered primary forest.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: The Amazon River, its huge basin, and the changes in biological processes that are rapidly occurring in this region are unquestionably of global significance. Hence, Global Change Biology is delighted to host a special thematic issue devoted to the Large-scale Biosphere–Atmosphere Experiment in Amazônia (LBA), which is a multinational, interdisciplinary research program led by Brazil. The goal of LBA is no less modest than its subject: to understand how Amazônia functions as a regional entity in the Earth system and how these functions are changing as a result of ongoing changes in land use. This compilation of 26 papers resulting from LBA-related research covers a broad range of topics: forest stocks of carbon (C) and nitrogen (N); fluxes of greenhouse gases and volatile organic compounds from vegetation, soils and wetlands; mapping and modeling land-use change, fire risk, and soil properties; measuring changes caused by logging, pasturing and cultivating; and new research approaches in meteorology to estimate nocturnal fluxes of C from forests and pastures. Some important new synthesis can be derived from these and other studies. The aboveground biomass of intact Amazonian forests appears to be a sink for atmospheric carbon dioxide (CO2), while the wetlands and soils are a net source of atmospheric methane (CH4) and nitrous oxide (N2O), respectively. Land-use change has, so far, had only a minor effect on basin-wide emissions of CH4 and N2O, but the net effect of deforestation and reforestation appears to be a significant net release of CO2 to the atmosphere. The sum of the 100-year global warming potentials (GWP) of these annual sources and sinks of CH4, N2O, and CO2 indicate that the Amazonian forest–river system currently may be nearly balanced in terms of the net GWP of these biogenic atmospheric gases. Of course, large uncertainties remain for these estimates, but the papers published here demonstrate tremendous progress, and also large remaining hurdles, in narrowing these uncertainties in our understanding of how Amazônia functions as a regional entity in the Earth system.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: The degree to which primary production, soil carbon, and trace gas fluxes in tropical forests of the Amazon are limited by moisture availability and other environmental factors was examined using an ecosystem modelling application for the country of Brazil. A regional geographical information system (GIS) serves as the data source of climate drivers, satellite images, land cover, and soil properties for input to the NASA Ames-CASA (Carnegie-Ames-Stanford Approach) model over a 8-km grid resolution. Simulation results lead us to hypothesize that net primary production (NPP) is limited by cloud interception of solar radiation over the humid north-western portion of the region. Peak annual rates for NPP of nearly 1.4 kg C m–2 year–1 are localized in the seasonally dry eastern Amazon in areas that we assume are primarily deep-rooted evergreen forest cover. Regional effects of forest conversion on NPP and soil carbon content are indicated in the model results, especially in seasonally dry areas. Comparison of model flux predictions along selected eco-climatic transects reveal moisture, soil, and land use controls on gradients of ecosystem production and soil trace gas emissions (CO2, N2O, and NO). These results are used to formulate a series of research hypotheses for testing in the next phase of regional modelling, which includes recalibration of the light-use efficiency term in NASA-CASA using field measurements of NPP, and refinements of vegetation index and soil property (texture and potential rooting depth) maps for the region.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Variation in soil temperature can account for most of the seasonal and diel variation in soil CO2 efflux, but the temperature effect is not always consistent, and other factors such as soil water content are known to influence soil respiration. The objectives of this research were to study the spatial and temporal variation in soil respiration in a temperate forested landscape and to evaluate temperature and soil water functions as predictors of soil respiration. Soil CO2 fluxes were measured with chambers throughout an annual cycle in six study areas at the Harvard Forest in central Massachusetts that include soil drainage classes from well drained to very poorly drained. The mean annual estimate of soil CO2 efflux was 7.2 Mg ha–1, but ranged from 5.3 in the swamp site to 8.5 in a well-drained site, indicating that landscape heterogeneity is related to soil drainage class. An exponential function relating CO2 fluxes to soil temperature accounted for 80% of the seasonal variation in fluxes across all sites (Q10 = 3.9), but the Q10 ranged from 3.4 to 5.6 for the individual study sites. A significant drought in 1995 caused rapid declines in soil respiration rates in August and September in five of the six sites (a swamp site was the exception). This decline in CO2 fluxes correlated exponentially with decreasing soil matric potential, indicating a mechanistic effect of drought stress. At moderate to high water contents, however, soil water content was negatively correlated with soil temperature, which precluded distinguishing between the effects of these two confounded factors on CO2 flux. Occurrence of high Q10 values and variation in Q10 values among sites may be related to: (i) confounding effects of high soil water content; (ii) seasonal and diel patterns in root respiration and turnover of fine roots that are linked to above ground phenology and metabolism; and (iii) variation in the depth where CO2 is produced. The Q10 function can yield reasonably good predictions of annual fluxes of CO2, but it is a simplification that masks responses of root and microbial processes to variation in temperature and water content throughout the soil.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large-scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by 〉40% and increased rates of consumption of atmospheric CH4 by a factor of 〉4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought-induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity-based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 8 (1991), S. 0 
    ISSN: 1574-6941
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...