ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-16
    Description: Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaudi, B S -- Bennett, D P -- Udalski, A -- Gould, A -- Christie, G W -- Maoz, D -- Dong, S -- McCormick, J -- Szymanski, M K -- Tristram, P J -- Nikolaev, S -- Paczynski, B -- Kubiak, M -- Pietrzynski, G -- Soszynski, I -- Szewczyk, O -- Ulaczyk, K -- Wyrzykowski, L -- OGLE Collaboration -- Depoy, D L -- Han, C -- Kaspi, S -- Lee, C-U -- Mallia, F -- Natusch, T -- Pogge, R W -- Park, B-G -- MuFUN Collaboration -- Abe, F -- Bond, I A -- Botzler, C S -- Fukui, A -- Hearnshaw, J B -- Itow, Y -- Kamiya, K -- Korpela, A V -- Kilmartin, P M -- Lin, W -- Masuda, K -- Matsubara, Y -- Motomura, M -- Muraki, Y -- Nakamura, S -- Okumura, T -- Ohnishi, K -- Rattenbury, N J -- Sako, T -- Saito, To -- Sato, S -- Skuljan, L -- Sullivan, D J -- Sumi, T -- Sweatman, W L -- Yock, P C M -- MOA Collaboration -- Albrow, M D -- Allan, A -- Beaulieu, J-P -- Burgdorf, M J -- Cook, K H -- Coutures, C -- Dominik, M -- Dieters, S -- Fouque, P -- Greenhill, J -- Horne, K -- Steele, I -- Tsapras, Y -- PLANET and RoboNet Collaborations -- Chaboyer, B -- Crocker, A -- Frank, S -- Macintosh, B -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):927-30. doi: 10.1126/science.1151947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA. gaudi@astronomy.ohio-state.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276883" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-08-31
    Description: Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abe, F -- Bennett, D P -- Bond, I A -- Eguchi, S -- Furuta, Y -- Hearnshaw, J B -- Kamiya, K -- Kilmartin, P M -- Kurata, Y -- Masuda, K -- Matsubara, Y -- Muraki, Y -- Noda, S -- Okajima, K -- Rakich, A -- Rattenbury, N J -- Sako, T -- Sekiguchi, T -- Sullivan, D J -- Sumi, T -- Tristram, P J -- Yanagisawa, T -- Yock, P C M -- Gal-Yam, A -- Lipkin, Y -- Maoz, D -- Ofek, E O -- Udalski, A -- Szewczyk, O -- Zebrun, K -- Soszynski, I -- Szymanski, M K -- Kubiak, M -- Pietrzynski, G -- Wyrzykowski, L -- New York, N.Y. -- Science. 2004 Aug 27;305(5688):1264-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-01, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15333833" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-13
    Description: Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M( plus sign in circle) and M( plus sign in circle) is Earth's mass). Cool Neptunes (10-30 M( plus sign in circle)) and super-Earths (5-10 M( plus sign in circle)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cassan, A -- Kubas, D -- Beaulieu, J-P -- Dominik, M -- Horne, K -- Greenhill, J -- Wambsganss, J -- Menzies, J -- Williams, A -- Jorgensen, U G -- Udalski, A -- Bennett, D P -- Albrow, M D -- Batista, V -- Brillant, S -- Caldwell, J A R -- Cole, A -- Coutures, Ch -- Cook, K H -- Dieters, S -- Prester, D Dominis -- Donatowicz, J -- Fouque, P -- Hill, K -- Kains, N -- Kane, S -- Marquette, J-B -- Martin, R -- Pollard, K R -- Sahu, K C -- Vinter, C -- Warren, D -- Watson, B -- Zub, M -- Sumi, T -- Szymanski, M K -- Kubiak, M -- Poleski, R -- Soszynski, I -- Ulaczyk, K -- Pietrzynski, G -- Wyrzykowski, L -- England -- Nature. 2012 Jan 11;481(7380):167-9. doi: 10.1038/nature10684.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Probing Lensing Anomalies Network (PLANET) Collaboration, Institut d'Astrophysique de Paris, Universite Pierre & Marie Curie, UMR7095 UPMC-CNRS, 98 bis boulevard Arago, 75014 Paris, France. cassan@iap.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237108" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-06
    Description: Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, 〈60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gould, A -- Udalski, A -- Shin, I-G -- Porritt, I -- Skowron, J -- Han, C -- Yee, J C -- Kozlowski, S -- Choi, J-Y -- Poleski, R -- Wyrzykowski, L -- Ulaczyk, K -- Pietrukowicz, P -- Mroz, P -- Szymanski, M K -- Kubiak, M -- Soszynski, I -- Pietrzynski, G -- Gaudi, B S -- Christie, G W -- Drummond, J -- McCormick, J -- Natusch, T -- Ngan, H -- Tan, T-G -- Albrow, M -- DePoy, D L -- Hwang, K-H -- Jung, Y K -- Lee, C-U -- Park, H -- Pogge, R W -- Abe, F -- Bennett, D P -- Bond, I A -- Botzler, C S -- Freeman, M -- Fukui, A -- Fukunaga, D -- Itow, Y -- Koshimoto, N -- Larsen, P -- Ling, C H -- Masuda, K -- Matsubara, Y -- Muraki, Y -- Namba, S -- Ohnishi, K -- Philpott, L -- Rattenbury, N J -- Saito, To -- Sullivan, D J -- Sumi, T -- Suzuki, D -- Tristram, P J -- Tsurumi, N -- Wada, K -- Yamai, N -- Yock, P C M -- Yonehara, A -- Shvartzvald, Y -- Maoz, D -- Kaspi, S -- Friedmann, M -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):46-9. doi: 10.1126/science.1251527.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA. ; Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland. ; Turitea Observatory, Palmerston North, New Zealand. ; Department of Physics, Chungbuk National University, Cheongju 371-763, Republic of Korea. cheongho@astroph.chungbuk.ac.kr. ; Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. ; Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA. Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland. ; Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK. ; Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA. Universidad de Concepcion, Departamento de Astronomia, Casilla 160-C, Concepcion, Chile. ; Auckland Observatory, Auckland, New Zealand. ; Possum Observatory, Patutahi, New Zealand. ; Farm Cove Observatory, Centre for Backyard Astrophysics, Pakuranga, Auckland, New Zealand. ; Possum Observatory, Patutahi, New Zealand. Auckland University of Technology, Auckland, New Zealand. ; Perth Exoplanet Survey Telescope, Perth, Australia. ; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. ; Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA. ; Department of Physics, Chungbuk National University, Cheongju 371-763, Republic of Korea. ; Korea Astronomy and Space Science Institute, Daejeon 305-348, Republic of Korea. ; Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan. ; University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA. ; Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland, New Zealand. ; Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001, New Zealand. ; Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232, Japan. ; Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan. ; Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001, New Zealand. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK. ; Nagano National College of Technology, Nagano 381-8550, Japan. ; Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. ; Tokyo Metropolitan College of Aeronautics, Tokyo 116-8523, Japan. ; School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand. ; Mount John University Observatory, Post Office Box 56, Lake Tekapo 8770, New Zealand. ; Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan. ; School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994642" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The properties of the recently discovered extrasolar planets were not anticipated by theoretical work on the formation of planetary systems, most models for which were developed to explain our Solar System. Indeed, the observational technique used to detect these planets (measurement of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The nature of dark matter remains mysterious, with luminous material accounting for at most ∼25 per cent of the baryons in the Universe. We accordingly undertook a survey looking for the microlensing of stars in the Large Magellanic Cloud (LMC) to determine the fraction of Galactic dark ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The MACHO Project7'8 uses the gravitational microlens signature to search for evidence of MACHOs in the Galactic halo, which is thought to be at least three times as massive as the visible disk2. (Two other groups are attempting a similar search9'10.) If most of our Galaxy's dark matter resides ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-24
    Description: The Large Scale Gas Injection Test (Lasgit) is a field-scale experiment designed to study the impact of gas build-up and subsequent migration through an engineered barrier system (EBS). Lasgit has a substantial experimental dataset containing in excess of 26 million datum points. The dataset is anticipated to contain a wealth of information, ranging from long-term trends and system behaviours to small-scale or ‘second-order’ features. In order to interrogate the Lasgit dataset, a bespoke computational toolkit, designed to expose and quantify difficult to observe phenomena in large, non-uniform datasets, has been developed and applied. Presented results focus on the investigation and interpretation of second-order events occurring in close proximity (temporally and spatially) to a known macro-scale gas flow event that occurred during the second gas injection test. The similarity of the investigated event to dilatant flow observed in laboratory experiments is noted, as is the evidence for localized flow pathways in the bentonite EBS. The sensitivity of the toolkit's ability to highlight second-order events is also evaluated.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...