ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: The contribution of extrinsic and genetic mechanisms in determining areas of the mammalian neocortex has been a contested issue. This study analyzes the roles of the regulatory genes Emx2 and Pax6, which are expressed in opposing gradients in the neocortical ventricular zone, in specifying areas. Changes in the patterning of molecular markers and area-specific connections between the cortex and thalamus suggest that arealization of the neocortex is disproportionately altered in Emx2 and Pax6 mutant mice in opposing manners predicted from their countergradients of expression: rostral areas expand and caudal areas contract in Emx2 mutants, whereas the opposite effect is seen in Pax6 mutants. These findings suggest that Emx2 and Pax6 cooperate to regulate arealization of the neocortex and to confer area identity to cortical cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bishop, K M -- Goudreau, G -- O'Leary, D D -- NS31558/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 14;288(5464):344-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10764649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cadherins/biosynthesis/genetics ; DNA-Binding Proteins/*genetics/physiology ; Eye Proteins ; *Gene Expression ; Gene Expression Regulation, Developmental ; *Genes, Homeobox ; *Genes, Regulator ; Homeodomain Proteins/*genetics/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Mutant Strains ; Morphogenesis ; Neocortex/*embryology/metabolism ; Neural Pathways ; Occipital Lobe/embryology/metabolism ; Paired Box Transcription Factors ; Repressor Proteins ; Somatosensory Cortex/embryology/metabolism ; Thalamus/embryology ; Transcription Factors ; Visual Cortex/embryology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-20
    Description: Naturally occurring axonal pruning and neuronal cell death help to sculpt neuronal connections during development, but their mechanistic basis remains poorly understood. Here we report that beta-amyloid precursor protein (APP) and death receptor 6 (DR6, also known as TNFRSF21) activate a widespread caspase-dependent self-destruction program. DR6 is broadly expressed by developing neurons, and is required for normal cell body death and axonal pruning both in vivo and after trophic-factor deprivation in vitro. Unlike neuronal cell body apoptosis, which requires caspase 3, we show that axonal degeneration requires caspase 6, which is activated in a punctate pattern that parallels the pattern of axonal fragmentation. DR6 is activated locally by an inactive surface ligand(s) that is released in an active form after trophic-factor deprivation, and we identify APP as a DR6 ligand. Trophic-factor deprivation triggers the shedding of surface APP in a beta-secretase (BACE)-dependent manner. Loss- and gain-of-function studies support a model in which a cleaved amino-terminal fragment of APP (N-APP) binds DR6 and triggers degeneration. Genetic support is provided by a common neuromuscular junction phenotype in mutant mice. Our results indicate that APP and DR6 are components of a neuronal self-destruction pathway, and suggest that an extracellular fragment of APP, acting via DR6 and caspase 6, contributes to Alzheimer's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677572/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677572/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nikolaev, Anatoly -- McLaughlin, Todd -- O'Leary, Dennis D M -- Tessier-Lavigne, Marc -- R01 AG025970/AG/NIA NIH HHS/ -- R01 EY007025/EY/NEI NIH HHS/ -- R01 EY007025-24/EY/NEI NIH HHS/ -- R01 EY07025/EY/NEI NIH HHS/ -- England -- Nature. 2009 Feb 19;457(7232):981-9. doi: 10.1038/nature07767.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Research, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225519" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Amyloid beta-Protein Precursor/chemistry/*metabolism ; Animals ; Axons/*metabolism ; Caspase 3/metabolism ; Caspase 6/*metabolism ; Caspases/*metabolism ; Cell Death ; Ligands ; Mice ; Neurons/*cytology/*metabolism ; Peptide Fragments/chemistry/metabolism ; Protein Binding ; Receptors, Tumor Necrosis Factor/*metabolism ; Signal Transduction ; bcl-2-Associated X Protein/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-01-12
    Description: Individual neurons in the brain send their axons over considerable distances to multiple targets, but the mechanisms governing this process are unresolved. An amenable system for studying axon outgrowth, branching, and target selection is the mammalian corticopontine projection. This major connection develops from parent corticospinal axons that have already grown past the pons, by a delayed interstitial budding of collateral branches that then grow directly into their target, the basilar pons. When cocultured with explants of developing cortex in three-dimensional collagen matrices, the basilar pons elicits the formation and directional growth of cortical axon collaterals across the intervening matrix. This effect appears to be target-specific and selectively influences neurons in the appropriate cortical layer. These in vitro findings provide evidence that the basilar pons becomes innervated by controlling at a distance the budding and directed ingrowth of cortical axon collaterals through the release of a diffusible, chemotropic molecule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heffner, C D -- Lumsden, A G -- O'Leary, D D -- EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jan 12;247(4939):217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cerebral Cortex/growth & development/*ultrastructure ; Culture Techniques ; Fluorescent Dyes ; Motor Cortex/ultrastructure ; Nerve Growth Factors/physiology ; Neural Pathways/growth & development/ultrastructure ; Pons/*physiology/ultrastructure ; Rats ; Spinal Cord/ultrastructure ; Visual Cortex/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-06-14
    Description: The identification of specialized areas in the mammalian neocortex, such as the primary visual or somatosensory cortex, is based on distinctions in architectural and functional features. The extent to which certain features that distinguish neocortical areas in rats are prespecified or emerge as a result of epigenetic interactions was investigated. Late embryonic visual cortex transplanted to neonatal somatosensory cortex was later assayed for "barrels," anatomically identified functional units unique to somatosensory cortex, and for boundaries of glycoconjugated molecules associated with barrels. Barrels and boundaries form in transplanted visual cortex and are organized in an array that resembles the pattern in the normal barrelfield. These findings show that different regions of the developing neocortex have similar potentials to differentiate features that distinguish neocortical areas and contribute to their unique functional organizations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlaggar, B L -- O'Leary, D D -- P01 NS17763/NS/NINDS NIH HHS/ -- R01 EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 14;252(5012):1556-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047863" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholinesterase/*analysis ; Aging ; Animals ; Animals, Newborn ; Brain Tissue Transplantation/*physiology ; Fetal Tissue Transplantation/physiology ; Glycoconjugates/analysis ; Microscopy, Fluorescence ; Neurons/cytology/enzymology/physiology ; Rats ; Rats, Inbred Strains ; Reference Values ; Somatosensory Cortex/cytology/growth & development/*physiology ; Transplantation, Heterotopic ; Visual Cortex/cytology/*physiology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: Retinotopic map development in nonmammalian vertebrates appears to be controlled by molecules that guide or restrict retinal axons to correct locations in their targets. However, the retinotopic map in the superior colliculus (SC) of the rat is developed instead by a topographic bias in collateral branching and arborization. Temporal retinal axons extending across alternating membranes from the topographically correct rostral SC or the incorrect caudal SC of embryonic rats preferentially branch on rostral membranes. Branching preference is due to an inhibitory phosphatidylinositol-linked molecule in the caudal SC. Thus, position-encoding membrane-bound molecules may establish retinotopic maps in mammals by regulating axon branching, not by directing axon growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roskies, A L -- O'Leary, D D -- NEI RO1 EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):799-803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Carbocyanines ; Cells, Cultured ; Embryonic and Fetal Development/physiology ; Fluorescent Dyes ; Phosphatidylinositol Diacylglycerol-Lyase ; Phosphoric Diester Hydrolases ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/*physiology ; Superior Colliculi/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-08
    Description: Studies of area patterning of the neocortex have focused on primary areas, concluding that the primary visual area, V1, is specified by transcription factors (TFs) expressed by progenitors. Mechanisms that determine higher-order visual areas (V(HO)) and distinguish them from V1 are unknown. We demonstrated a requirement for thalamocortical axon (TCA) input by genetically deleting geniculocortical TCAs and showed that they drive differentiation of patterned gene expression that distinguishes V1 and V(HO). Our findings suggest a multistage process for area patterning: TFs expressed by progenitors specify an occipital visual cortical field that differentiates into V1 and V(HO); this latter phase requires geniculocortical TCA input to the nascent V1 that determines genetic distinctions between V1 and V(HO) for all layers and ultimately determines their area-specific functional properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou, Shen-Ju -- Babot, Zoila -- Leingartner, Axel -- Studer, Michele -- Nakagawa, Yasushi -- O'Leary, Dennis D M -- MH086147/MH/NIMH NIH HHS/ -- R01 MH086147/MH/NIMH NIH HHS/ -- R01 NS031558/NS/NINDS NIH HHS/ -- R01 NS31558/NS/NINDS NIH HHS/ -- R37 NS031558/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1239-42. doi: 10.1126/science.1232806.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744949" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Gene Deletion ; Gene Expression Regulation ; Genetic Markers ; Mice ; Mice, Knockout ; Neocortex/*physiology ; Neural Stem Cells/metabolism ; Thalamus/*physiology ; Transcription Factors/biosynthesis ; Visual Cortex/*physiology ; Visual Fields/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-09-21
    Description: The development of most regions of the vertebrate nervous system includes a distinct phase of neuronal degeneration during which a substantial proportion of the neurons initially generated die. This degeneration primarily adjusts the magnitude of each neuronal population to the size or functional needs of its projection field, but in the process it seems also to eliminate many neurons whose axons have grown to either the wrong target or an inappropriate region within the target area. In addition, many connections that are initially formed are later eliminated without the death of the parent cell. In most cases such process elimination results in the removal of terminal axonal branches and hence serves as a mechanism to "fine-tune" neuronal wiring. However, there are now also several examples of the large-scale elimination of early-formed pathways as a result of the selective degeneration of long axon collaterals. Thus, far from being relatively minor aspects of neural development, these regressive phenomena are now recognized as playing a major role in determining the form of the mature nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowan, W M -- Fawcett, J W -- O'Leary, D D -- Stanfield, B B -- EY-03653/EY/NEI NIH HHS/ -- NS-18506/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Sep 21;225(4668):1258-65.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6474175" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Brain/*growth & development ; Cricetinae ; *Nerve Degeneration ; Nerve Growth Factors/pharmacology ; Nervous System/*growth & development ; Purkinje Cells/physiology ; Rats ; Retina/growth & development ; Superior Colliculi/growth & development ; Synapses/physiology ; Visual Pathways/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 17 (1994), S. 419-439 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1983-10-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-03-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...