ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-04
    Description: An in situ analytical technique that can remotely determine the elemental constituents of solids has been demonstrated. Laser-Induced Breakdown Spectroscopy (LIBS) is a form of atomic emission spectroscopy in which a powerful laser pulse is focused on a solid to generate a laser spark, or microplasma. Material in the plasma is vaporized, and the resulting atoms are excited to emit light. The light is spectrally resolved to identify the emitting species. LIBS is a simple technique that can be automated for inclusion aboard a remotely operated vehicle. Since only optical access to a sample is required, areas inaccessible to a rover can be analyzed remotely. A single laser spark both vaporizes and excites the sample so that near real-time analysis (a few minutes) is possible. This technique provides simultaneous multielement detection and has good sensitivity for many elements. LIBS also eliminates the need for sample retrieval and preparation preventing possible sample contamination. These qualities make the LIBS technique uniquely suited for use in the lunar environment.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Joint Workshop on New Technologies for Lunar Resource Assessment; p 34-35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Identification of non-silicate samples on Mars, such as carbonates, sulfates, nitrates, or evaporites in general, is important because of their association with aqueous processes and their potential as exobiology sites. Infrared (IR) and thermal emission (TE) spectroscopy have been considered the primary tools for remote identification of these minerals. This includes current and future orbital assets such as TES on MGS, THEMIS on Mars Odyssey, OMEGA on Mars Express, CRISM on MRO, and now the Mini-TES on the MER rovers. While reflectance and emission spectroscopy have clearly been the method of choice for these missions, the technique is not always successful in mineral identifications due to dust, surface weathering chemistry, coatings, or surface texture. Here we describe and show IR spectra of several such samples, and then report on the relative success of LIBS analyses in determining the rock type.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Mars: Surface Coatings, Mineralogy, and Surface Properties; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: As our knowledge of the planet Mars continues to grow, one parameter that remains elusive is the absolute chronology of the planet s geological history. Although crater counts have provided a robust relative chronology, impactor fluxes are poorly enough known that there are places on Mars where the absolute age is uncertain by a factor of two or more. To resolve these uncertainties, it will be necessary to either analyze well-documented samples returned to the Earth from the Martian surface or to perform in situ measurements with sufficient precision. Sample return is still at least a decade away, and even then it might be from a biologically interesting area that might be geologically complex. Hence an in situ measurement, within an uncertainty of 20% or better, could greatly improve our knowledge of the history of Mars. With funding from the Planetary Instrument Definition and Development Program (PIDDP), we have been working on an instrument to perform potassium-argon (K-Ar) and cosmic-ray exposure (CRE) dating in situ on the surface of Mars. For either of these techniques, it is necessary to measure the abundance of one or more major or minor elements (K in the case of KAr; all majors and minors in the case of CRE) and the abundance and isotopes composition of a noble gas (Ar in the case of K-Ar; He, Ne and Ar for CRE dating). The technology for either of these types of measurements exists, but has never before been integrated for a spacecraft. We refer to the instrument as AGE, the Argon Geochronology Experiment (although we will measure the noble gases He and Ne as well for CRE ages). We report here on the basic components that go into such an instrument, both those that use existing technology and those that had to be developed to create the integrated package.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: One of the most fundamental pieces of information about any planetary body is the elemental composition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks to which direct contact is possible. These in- situ analyses require that the lander or rover be in contact with the sample. In addition to in-situ instrumentation, the present generation of rovers carry instruments that operate at stand-off distances. The Mini-TES is an example of a stand-off instrument on the MER rovers. Other examples for future missions include infrared point spectrometers and microscopic-imagers that can operate at a distance. The main advantage of such types of analyses is obvious: the sensing element does not need to be in contact or even adjacent to the target sample. This opens up new sensing capabilities. For example, targets that cannot be reached by a rover due to impassable terrain or targets positioned on a cliff face can now be accessed using stand-off analysis. In addition, the duty cycle of stand-off analysis can be much greater than that provided by in-situ measurements because the stand-off analysis probe can be aimed rapidly at different features of interest eliminating the need for the rover to actually move to the target. Over the past five years we have been developing a stand-off method of elemental analysis based on atomic emission spectroscopy called laser-induced breakdown spectroscopy (LIBS). A laser-produced spark vaporizes and excites the target material, the elements of which emit at characteristic wavelengths. Using this method, material can be analyzed from within a radius of several tens of meters from the instrument platform. A relatively large area can therefore be sampled from a simple lander without requiring a rover or sampling arms. The placement of such an instrument on a rover would allow the sampling of locations distant from the landing site. Here we give a description of the LIBS method and its advantages. We discuss recent work on determining its characteristics for Mars exploration, including accuracy, detection limits, and suitability for determining the presence of water ice and hydrated minerals. We also give a description of prototype instruments we have tested in field settings.
    Keywords: Instrumentation and Photography
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...