ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-27
    Description: (U-Th)/He thermochronometry relies on accurate and precise quantification of individual grain volume and surface area, which are used to calculate mass, alpha ejection (FT) correction, isotope concentrations, equivalent sphere radius (ESR), and ultimately age. The vast majority of studies use 2D or 3D microscope dimension measurements and an idealized grain shape to calculate these parameters, and a long-standing question is how much uncertainty these assumptions contribute to observed intra-sample age dispersion and accuracy. Here we compare the results for volume, surface area, grain mass, ESR, effective uranium (eU) and FT correction derived from 2D microscope and 3D x-ray computed tomography (CT) length and width data for 〉 100 apatite grains. We analyzed apatite grains from two samples that exhibited a variety of crystal habits, some with inclusions. We also present 83 new apatite (U-Th)/He ages to assess the influence of 2D versus 3D FT correction on sample age precision. The data illustrate that the 2D approach systematically overestimates grain volumes and surface areas by 20–25 %, impacting the estimates for mass, eU, and ESR – all important parameters used for interpreting age scatter and inverse modeling. FT factors calculated from 2D and 3D measurements differ by ~ 2 %. This variation, however, has effectively no impact on reducing intra-sample age reproducibility. We also present a grain mounting procedure for x-ray CT scanning that can allow 100's of grains to be scanned in a single session, and new software capabilities for 3D FT and FT-based ESR calculations that are robust for relatively low-resolution CT data, that together enable efficient and cost-effective CT-based characterization.
    Electronic ISSN: 2628-3735
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-30
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-26
    Description: (U–Th) ∕ He thermochronometry relies on the accurate and precise quantification of individual grain volume and surface area, which are used to calculate mass, alpha ejection (FT) correction, equivalent sphere radius (ESR), and ultimately isotope concentrations and age. The vast majority of studies use 2-D or 3-D microscope dimension measurements and an idealized grain shape to calculate these parameters, and a long-standing question is how much uncertainty these assumptions contribute to observed intra-sample age dispersion and accuracy. Here we compare the results for volume, surface area, grain mass, ESR, and FT correction derived from 2-D microscope and 3-D X-ray computed tomography (CT) length and width data for 〉 100 apatite grains. We analyzed apatite grains from two samples that exhibited a variety of crystal habits, some with inclusions. We also present 83 new apatite (U–Th) ∕ He ages to assess the influence of 2-D versus 3-D FT correction on sample age precision and effective uranium (eU). The data illustrate that the 2-D approach systematically overestimates grain volumes and surface areas by 20 %–25 %, impacting the estimates for mass, eU, and ESR – important parameters with implications for interpreting age scatter and inverse modeling. FT factors calculated from 2-D and 3-D measurements differ by ∼2 %. This variation, however, has effectively no impact on reducing intra-sample age reproducibility, even on small aliquot samples (e.g., four grains). We also present a grain-mounting procedure for X-ray CT scanning that can allow hundreds of grains to be scanned in a single session and new software capabilities for 3-D FT and FT-based ESR calculations that are robust for relatively low-resolution CT data, which together enable efficient and cost-effective CT-based characterization.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-19
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-09
    Description: The issues facing academic mothers have been discussed for decades. Coronavirus Disease 2019 (COVID-19) is further exposing these inequalities as womxn scientists who are parenting while also engaging in a combination of academic related duties are falling behind. These inequities can be solved by investing strategically in solutions. Here we describe strategies that would ensure a more equitable academy for working mothers now and in the future. While the data are clear that mothers are being disproportionately impacted by COVID-19, many groups could benefit from these strategies. Rather than rebuilding what we once knew, let us be the architects of a new world.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-01
    Electronic ISSN: 2576-604X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 15517, doi:10.1038/s41598-018-33610-9.
    Description: Subduction zones impose an important control on the geochemical cycling between the surficial and internal reservoirs of the Earth. Sulphur and carbon are transferred into Earth’s mantle by subduction of pelagic sediments and altered oceanic lithosphere. Release of oxidizing sulphate- and carbonate-bearing fluids modifies the redox state of the mantle and the chemical budget of subduction zones. Yet, the mechanisms of sulphur and carbon cycling within subduction zones are still unclear, in part because data are typically derived from arc volcanoes where fluid compositions are modified during transport through the mantle wedge. We determined the bulk rock elemental, and sulphur and carbon isotope compositions of exhumed ultramafic and metabasic rocks from Syros, Greece. Comparison of isotopic data with major and trace element compositions indicates seawater alteration and chemical exchange with sediment-derived fluids within the subduction zone channel. We show that small bodies of detached slab material are subject to metasomatic processes during exhumation, in contrast to large sequences of obducted ophiolitic sections that retain their seafloor alteration signatures. In particular, fluids circulating along the plate interface can cause sulphur mobilization during several stages of exhumation within high-pressure rocks. This takes place more pervasively in serpentinites compared to mafic rocks.
    Description: This project was supported by NSF-EAR grant 1324566 to E.M.S. and B.C.G., and NSF EAR award 1250470 to M.J.C. We acknowledge support by the German Research Foundation and the Open Access Publication Fund of the Freie Universität Berlin.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(5), (2020): e2019JB018632, doi:10.1029/2019JB018632.
    Description: Carbonate‐altered peridotite are common in continental and oceanic settings and it has been suggested that peridotite‐hosted carbonate represent a significant component of the carbon‐cycle and provide an important link in the CO2 dynamics between the atmosphere, hydrosphere, and lithosphere. The ability to constrain the timing of carbonate and accessory phase growth is key to interpreting the mechanisms that contribute to carbonate alteration, veining, and mineralization in ultramafic rocks. Here we examine a mantle section of the Samail ophiolite exposed in Wadi Fins in southeastern Oman where the peridotite is unconformably overlain by Late Cretaceous‐Paleogene limestone and crosscut by an extensive network of carbonate veins and fracture‐controlled alteration. Three previous 87Sr/86Sr measurements on carbonate vein material in the peridotite produce results consistent with vein formation involving Cretaceous to Eocene seawater (de Obeso & Kelemen, 2018, https://doi.org/10.1098/rsta.2018.0433). We employ (U‐Th)/He chronometry to constrain the timing of hydrothermal magnetite in the calcite veins in the peridotite. Magnetite (U‐Th)/He ages of crystal sizes ranging from 1 cm to 200 μm record Miocene growth at 15 ± 4 Ma, which may indicate (1) fluid–rock interaction and carbonate precipitation in the Miocene, or (2) magnetite (re)crystallization within pre‐existing veins. Taken together with published Sr‐isotope values, these results suggest that carbonate veining at Wadi Fins started as early as the Cretaceous, and continued in the Miocene associated with magnetite growth. The timing of hydrothermal magnetite growth is coeval with Neogene shortening and faulting in southern Oman, which points to a tectonic driver for vein (re)opening and fluid‐rock alteration.
    Description: This research was supported by a National Science Foundation (NSF) Graduate Research Fellowship to E.H.G. Cooperdock, the UTChron Laboratory at The University of Texas at Austin, the Chevron (Gulf) Centennial Professorship to D.F. Stockli, and by a Sloan Foundation grant awarded to P.B. Kelemen. We are grateful to Desmond Patterson for assistance and training with He measurements and data reduction, to Jessie Maisano for technical support with the X‐Ray Computed Tomography. These data and images were produced at the High‐Resolution X‐ray Computed Tomography Facility of the University of Texas at Austin. EHGC is grateful to Jaime Barnes, Richard Ketcham, Frieder Klein and Othmar Müntener for helpful comments on an earlier version of this manuscript. Thank you to Fin Stuart and Uwe Ring for their helpful reviews, and Stephen Parman for feedback and editorial handling of the manuscript. The (U‐Th)/He data in this manuscript are available in the GeoChron repository (https://www.geochron.org) and sample IGSNs are in the SESAR database (http://www.geosamples.org).
    Description: 2020-10-06
    Keywords: magnetite ; U‐Th/He thermochronology ; ophicarbonate ; Oman ; Wadi Fins ; serpentinite
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...