ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: The Mw 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ∼3-5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ∼6 km of the deformation front. After the Mw 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-25
    Description: We study the structure and tectonics of the collision zone between the Nazca Ridge (NR) and the Peruvian margin constrained by seismic, gravimetric, bathymetric, and natural seismological data. The NR was formed in an on-ridge setting, and it is characterized by a smooth and broad shallow seafloor (swell) with an estimated buoyancy flux of ~7 Mg/s. The seismic results show that the NR hosts an oceanic lower crust 10–14 km thick with velocities of 7.2–7.5 km/s suggesting intrusion of magmatic material from the hot spot plume to the oceanic plate. Our results show evidence for subduction erosion in the frontal part of the margin likely enhanced by the collision of the NR. The ridge-trench collision zone correlates with the presence of a prominent normal scarp, a narrow continental slope, and (uplifted) shelf. In contrast, adjacent of the collision zone, the slope does not present a topographic scarp and the continental slope and shelf become wider and deeper. Geophysical and geodetic evidence indicate that the collision zone is characterized by low seismic coupling at the plate interface. This is consistent with vigorous subduction erosion enhanced by the subducting NR causing abrasion and increase of fluid pore pressure at the interplate contact. Furthermore, the NR has behaved as a barrier for rupture propagation of megathrust earthquakes (e.g., 1746 Mw 8.6 and 1942 Mw 8.1 events). In contrast, for moderate earthquakes (e.g., 1996 Mw 7.7 and 2011 Mw 6.9 events), the NR has behaved as a seismic asperity nucleating at depths 〉20 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-27
    Description: Splay faults, large thrust faults emerging from the plate boundary to the seafloor in subduction zones, are considered to enhance tsunami generation by transferring slip from the very shallow dip of the megathrust onto steeper faults, thus increasing vertical displacement of the seafloor. These structures are predominantly found offshore, and are therefore difficult to detect in seismicity studies, as most seismometer stations are located onshore. The M w (moment magnitude) 8.8 Maule earthquake on 27 February 2010 affected ~500 km of the central Chilean margin. In response to this event, a network of 30 ocean-bottom seismometers was deployed for a 3 month period north of the main shock where the highest coseismic slip rates were detected, and combined with land station data providing onshore as well as offshore coverage of the northern part of the rupture area. The aftershock seismicity in the northern part of the survey area reveals, for the first time, a well-resolved seismically active splay fault in the submarine forearc. Application of critical taper theory analysis suggests that in the northernmost part of the rupture zone, coseismic slip likely propagated along the splay fault and not the subduction thrust fault, while in the southern part it propagated along the subduction thrust fault and not the splay fault. The possibility of splay faults being activated in some segments of the rupture zone but not others should be considered when modeling slip distributions.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-09
    Description: When describing the mechanical behaviour of the lithosphere modelled as a thin plate, the most important parameter corresponds to its flexural rigidity, which is commonly expressed through the effective elastic thickness, T e . This parameter is a measure of the stiffness of the plate and defines the maximum magnitude and wavelength of those surface loads that can be supported without suffering unelastic deformation. Realistic 3-D models of the flexural response of the lithosphere near the trench are scarce because of the mathematical and computational complexity. We present a method for determining the flexure of the lithosphere caused by the combined effect of 3-D seamount loading and bending of the lithosphere near the trench. Our method consists on solving numerically the flexure equations of the Reissner–Mindlin thin plate theory, including variable thickness, using the finite element method with mesh adaptation. The method was applied to study the flexure of the oceanic Nazca lithosphere beneath the O'Higgins seamount group which lies ~70 km seaward of the Chile trench. The results show that an elastic thickness T e of ~5 km under the seamounts, a T e of ~15 km far from the trench and a T e of ~13 km near the trench can explain both, the down deflection of the oceanic Moho and bending of the oceanic lithosphere observed in seismic and gravity profiles. In order to study the impact of high trench curvature on the morphology of the outer rise, we apply the same methodology to study and model the flexure of the lithosphere in the Arica Bend region (14°S–23°S). Results indicate that the T e values are overestimated if the 3-D trench curvature is not included in the modelling.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-11
    Description: The pre- and current collision of the Juan Fernández Ridge with the central Chilean margin at 31°–33°S is characterized by large-scale crustal thinning and long-term subsidence of the submarine forearc caused by subduction erosion processes. Here, we study the structure of the central Chilean margin in the ridge–trench collision zone by using wide-angle and multichannel seismic data. The transition from the upper to middle continental slope is defined by a trenchward dipping normal scarp with variable offsets of 500–2000 m height. Beneath the scarp, the 2-D velocity–depth models show a prominent lateral velocity contrast of 〉1 s –1 that propagates deep into the continental crust defining a major lateral seismic discontinuity. The discontinuity is interpreted as the lithological contact between the subsided/collapsed outermost forearc (composed of eroded and highly fractured volcanic rocks) and the seaward part of the uplifted Coastal Cordillera (made of less fractured metamorphic/igneous rocks). Extensional faults are abundant in the collapsed outermost forearc, however, landward of the continental slope scarp, both extensional and compressional structures are observed along the uplifted continental shelf that forms part of the Coastal Cordillera. Particularly, at the landward flank of the Valparaíso Forearc Basin (32°–33.5°S), shallow crustal seismicity has been recorded in 2008–2009 forming a dense cluster of thrust events of M w 4–5. The estimated hypocentres spatially correlate with the location of the fault scarp, and they highlight the upper part of the seismic crustal discontinuity.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-30
    Description: The Chile Trench of the convergent continental margin of Central Chile is a sediment-filled basin that stretches over 1500 km in a north–south direction. The sediment fill reflects latitudinal variations in climate as well as in the morphology and geology of Chile, but also of sediment transport processes to the trench and within the trench. We try to untangle these signals by calculating the total volume and the latitudinal volume distribution of trench sediments and by relating this distribution to a number of factors that affect this pattern. The volume calculation is based on a model geometry of the top of the subducting oceanic plate that is buried beneath trench sediments and the sea floor as measured by swath bathymetry. We obtain the model geometry of the subducting plate by interpolating between depth-converted seismic reflection profiles that cross the trench. The total volume of the trench fill between 32 and 46°S is calculated to be 46000 ± 500 km 3 . The resulting latitudinal volume distribution is best explained by a sedimentation model that alternates between (1) glacial phases of high sediment flux from Southern Chile combined with active latitudinal sediment transport within the trench and (2) interglacial phases over which sediment input is dominated by local factors. Supplementary material: Top of the oceanic basement (TOB) grid is available as ascii raw data files (xyz) at www.geolsoc.org.uk/SUP18664 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-08
    Description: Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the M w 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr –1 . At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic–aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-09-12
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2012-04-08
    Description: No large tsunamigenic earthquake has occurred in north Chile since 1877 and the region has been largely recognized as a mature seismic gap. At the southern end of the seismic gap, the 2007 M w 7.7 Tocopilla earthquake ruptured the deeper seismogenic interface, whereas the coupled upper interface remained unbroken. Seismological studies onshore show a gently varying dip of 20°to 30°of the downgoing Nazca plate, which extends from the trench down to depths of 40-50km. Here, we study the lithospheric structure of the subduction zone of north Chile at about 22°S, using wide-angle seismic refraction and reflection data from land and sea, complemented by hypocentre data recorded during the 2007 Tocopilla aftershocks. Our data document an abrupt increase in the dip of the subducting plate, from less than 10°to about 22°, at a depth of approximately 20km. The distribution of the 2007 aftershocks indicates that the change in dip acted as a barrier for the propagation of the 2007 earthquake towards the trench, which, in turn, indicates that the subduction megathrust is not only segmented along the trench, but also in the direction of the dip. We propose that large-magnitude tsunamigenic earthquakes must cross the barrier and rupture the entire seismogenic zone. © 2012 Macmillan Publishers Limited. All rights reserved.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...