ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 14 (1975), S. 2895-2903 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many aspects of plant water use – particularly in response to soil drought – may have as their basis the alteration of hydraulic conductance from soil to canopy. The regulation of plant water potential (Ψ) by stomatal control and leaf area adjustment may be necessary to maximize water uptake on the one hand, while avoiding loss of hydraulic contact with the soil water on the other. Modelling the changes in hydraulic conductance with pressure gradients in the continuum allows the prediction of water use as a function of soil environment and plant architectural and xylem traits. Large differences in water use between species can be attributed in part to differences in their ‘hydraulic equipment’ that is presumably optimized for drawing water from a particular temporal and spatial niche in the soil environment. A number of studies have identified hydraulic limits as the cause of partial or complete foliar dieback in response to drought. The interactions between root:shoot ratio, rooting depth, xylem properties, and soil properties in influencing the limits to canopy water supply can be used to predict which combinations should optimize water use in a given circumstance. The hydraulic approach can improve our understanding of the coupling of canopy processes to soil environment, and the adaptive significance of stomatal behaviour.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Hydraulic conductivity (K) in the soil and xylem declines as water potential (Ψ) declines. This results in a maximum rate of steady-state transpiration (Ecrit) and corresponding minimum leaf Ψ (Ψcrit) at which K has approached zero somewhere in the soil–leaf continuum. Exceeding these limits causes water transport to cease. A model determined whether the point of hydraulic failure (where K = 0) occurred in the rhizosphere or xylem components of the continuum. Below a threshold of root:leaf area (AR:AL), the loss of rhizosphere K limited Ecrit and Ψcrit. Above the threshold, loss of xylem K from cavitation was limiting. The AR:AL threshold ranged from 〉 40 for coarse soils and/or cavitation-resistant xylem to 〈 0·20 in fine soils and/or cavitation-susceptible xylem. Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species’ hydraulic potential for extracting soil water, and that the more sensitive stomatal response of water birch to drought was necessary to avoid hydraulic failure. The results suggest that plants should be xylem-limited and near their AR:AL threshold. Corollary predictions are (1) within a soil type the AR:AL should increase with increasing cavitation resistance and drought tolerance, and (2) across soil types from fine to coarse the AR:AL should increase and maximum cavitation resistance should decrease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Phenology ; Leaf demography ; Carbon balance ; Water stress ; Twig photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Canopy development and photosynthetic rate were measured at monthly intervals over a period of one year in 19 shrub and subshrub species of the Mojave and upper Sonoran Deserts. Thirteen of these species realized a substantial fraction of their total net carbon assimilation via twig photosynthesis. The twig contribution to whole plant yearly carbon gain reached a maximum of 83% in species such as Thamnosma montana, Salizaria mexicana, and Baccharis brachyphylla. This large contribution by twigs was due to both low levels of leaf production and the greater longevity of twig tissues. In some other species, however, leaf and twig organs had similar lifespans. During the year of this study (which had an unusually warm, mild winter), no species showed a pattern of winter deciduousness. The reduction in total photosynthetic area between maximal spring canopy development and mid August summer dormancy ranged from 32 to 94%. Some herbaceous perennial species died back to the ground, but none of the woody shrubs were totally without green canopy area at any time of the year. No species studied were capable of high rates of photosynthesis at low plant water potentials in July and August, but, in those species which maintained a substantial canopy area through the drought period, previously stressed tissues showed substantial recovery after fall rains. Photosynthetic rate was significantly correlated with both plant water potential and tissue nitrogen content over the entire year, but only weakly so. This is due in part to the winter months when plant water potentials and tissue nitrogen contents were high, but photosynthetic rates were often low.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 71 (1987), S. 318-320 
    ISSN: 1432-1939
    Keywords: Stable isotopes ; Intercellular carbon dioxide ; Water-use efficiency ; Desert shrubs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Carbon isotope ratios were determined for bulk tissues of both leaves and current season twigs of 29 species of Mohave Desert shrubs. Leaf and twig tissues were found to differ in their carbon isotope ratios, only in those species which had photosynthetic twigs. These data suggest that the twigs of these species operate at lower intercellular CO2 values than leaves, an interpretation which is consistent with available gas-exchange data. An effect of microhabitat was also evident between the mean isotope ratios of leaves from wash versus slope habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Key words Climatic ecotypes ; Hydraulic limitation ; Hydraulic signaling ; Plant morphology ; Allocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Adjustment of hydraulic architecture in response to environmental conditions was studied in two warm-desert sub-shrubs, Hymenoclea salsola and Ambrosia dumosa, both at the level of genetic adaptation along a climatic gradient and plastic response to immediate growth conditions. Individuals of both species originating from southern populations developed higher leaf-specific hydraulic conductance in the common greenhouse than individuals from northern populations. Hydraulic conductance was higher in plants grown at high temperature, but did not vary as a function of growth relative humidity. Hydraulic conductance was not correlated within species with individual variation in vessel diameter, cavitation vulnerability, or root:shoot ratio, but was strongly, negatively correlated with the fraction of total plant biomass allocated to leaves. For both species, stomatal conductance (g s) at high leaf-to-air vapor pressure difference (ν) was tightly correlated with variability in hydraulic conductance, as was the sensitivity of stomatal closure to increasing ν. Experimentally increasing shoot water potential by soil pressurization, under conditions where high ν had already caused stomatal closure, led to substantial stomatal reopening in both species, but recovery was significantly higher in H. salsola. Hydraulic conductance was higher in H. salsola than A. dumosa. H.salsola also differed from A. dumosa by being a representative of a highly specialised group of desert shrubs which use the twigs as a major photosynthetic organ. The southern population of H. salsola produced far fewer leaves and relied much more heavily on twig photosynthesis than the northern population. At the whole-plant level, increased reliance on twig photosynthesis was associated with higher leaf-specific hydraulic conductance, but equivalent whole-plant photosynthesis on either a dry weight (µmol CO2 g–1) or nitrogen basis (µmol CO2 g–1)). This suggests that twig photosynthesis might be one way of increasing hydraulic conductance per unit photosynthetic canopy by increasing allocation to an organ which simultaneously performs photosynthetic, support, and transport functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Predawn xylem pressure potentials were measured on two California chaparral shrubs, Ceanothus megacarpus and Ceanothus crassifolius, throughout the winter and spring growing season and into the summer drought. On the days xylem pressure potentials were measured, leaf orientation measurements were made on a population of marked leaves from the same shrubs. Predawn xylem pressure potentials decreased from -0.1 MPa in both species to -7.8 and -6.6 MPa in C. megacarpus and C. crassifolius, respectively, between May and August, 1981. Leaf inclinations became more vertical during this period with the greatest change observed in C. crassifolius. This change in leaf inclination was reversible, and, in the late winter and early spring, one year old leaves became more horizontal. Leaf azimuths were random and did not change seasonally. Simulations of solar radiation interception indicated that the increase in leaf inclination associated with summer drought reduced the absorption of solar radiation in August by 6% for C. megacarpus and 20% for C. crassifolius. Standard leaf energy budget calculations suggest that steep leaf inclinations would result in slightly lower leaf temperatures and transpiration rates under summer conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1972-05-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1970-06-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-08-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...