ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 29 (1967), S. 692-695 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2000-02-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1967-12-01
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-07
    Description: Feld-maréchal, septième prince du nom, Charles-Joseph de Ligne (1735-1814) exerça une véritable fascination sur ses contemporains. Ce volume, auquel ont contribué des spécialistes issus de plusieurs disciplines, entend rompre avec la représentation figée d'un homme et d’une œuvre trop longtemps méconnus.
    Keywords: eighteenth century ; history ; literature ; Belgium ; thema EDItEUR::D Biography, Literature and Literary studies::D Biography, Literature and Literary studies::DS Literature: history and criticism
    Language: French
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical and Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2023.
    Description: To predict and mitigate anthropogenic impacts on the ocean, we must understand the underlying systems that govern the ocean’s response to inputs (e.g. carbon dioxide, pollutants). Analytical models can be used to generate predictions and simulate intervention strategies, but they must be grounded with empirical observations. Unfortunately, there exists a technological gap: in situ instrumentation is often lacking or nonexistent for key parameters influenced by anthropogenic inputs. While discrete bottle samples can be collected and analyzed for these parameters, their limited spatiotemporal resolution constrains scientific inquiry. To help fill the technological gap, this dissertation presents the development of instrumentation for the ocean inorganic carbon system and microplastics. The first few chapters present the development process of CSPEC, a deep-sea laser spectrometer designed to measure the ocean carbon system through alternating measurements of the partial pressure of carbon dioxide (pCO2) and dissolved inorganic carbon (DIC). CSPEC uses tunable diode laser absorption spectroscopy (TDLAS) to measure the CO2 content of dissolved gas extracted via a membrane inlet. Chapter 2 derives membrane equilibration dynamics from first principles, thus enabling informed design decisions. The analytical results showed that cross-sensitivity to other dissolved gases can be introduced by the equilibration method, regardless of the specificity of the gas-side instrumentation. A new method, hybrid equilibration, leverages the membrane equilibration dynamics to improve time response without incurring cross-sensitivity. Chapter 3 presents POCO, a surface pCO2 instrument that employs TDLAS and a depth-compatible membrane inlet. Through laboratory and field-testing, POCO demonstrated that hybrid equilibration overcame the gas flux limitation of deep-sea membrane inlets. Chapter 4 presents CSPEC, which successfully mapped the carbon system near different hydrothermal features at 2000 m in Guaymas Basin, becoming one of the first DIC instruments field-tested at depth. Chapter 5 introduces impedance spectroscopy for quantifying microplastics directly in water. Microplastics were successfully counted, sized, and differentiated from biology in the laboratory: a step toward in situ quantification. The analytical tools and measurement systems presented in this dissertation represent a significant step towards increasing the spatiotemporal resolution of carbon system and microplastic measurements, thus enabling broader scientific inquiry in the future.
    Description: This research was supported by the following funding sources: NSF Grant # OCE-1454067 NSF Grant # OCE-184-2053 Link Foundation Ocean Engineering and Instrumentation Ph.D. Fellowship MITMartin Family Society of Fellows for Sustainability Richard Saltonstall Charitable Foundation National Academies Keck Future Initiative (NAFKI DBS13)
    Keywords: In situ ; Disssolved inorganic carbon ; Microplastics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-21
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colson, B. C., & Michel, A. P. M. Flow-through quantification of microplastics using impedance spectroscopy. ACS Sensors, 6(1), (2021): 238–244, doi:10.1021/acssensors.0c02223.
    Description: Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212–1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300–1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
    Description: The authors thank the Richard Saltonstall Charitable Foundation and the National Academies Keck Futures Initiative (NAKFI DBS13) for their funding support.
    Keywords: Microplastics ; Plastics ; Impedance spectroscopy ; Dielectric properties ; Instrumentation ; Particle detection ; Flow-through ; Environmental sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Belhaouari, D., De Souza, G., Lamb, D., Kelly, S., Goldstone, J., Stegeman, J., Colson, P., La Scola, B., & Aherfi, S. Metabolic arsenal of giant viruses: host hijack or self-use? ELife, 11, (2022): e78674, https://doi.org/10.7554/elife.78674.
    Description: Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.
    Description: Royal Society - David C. Lamb Woods Hole Center for Oceans and Human Health - John J. Stegeman National Institutes of Health (P01ES021923) - John J. Stegeman National Science Foundation (OCE-1314642) - John J. Stegeman Agence Nationale de la Recherche ("Investments for the Future" program Méditerranée-Infection 10-IAHU-03) Djamal Brahim Belhaouari Gabriel Augusto Pires De Souza Philippe Colson Sarah Aherfi
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blevins, M. G., Allen, H. L., Colson, B. C., Cook, A.-M., Greenbaum, A. Z., Hemami, S. S., Hollmann, J., Kim, E., LaRocca, A. A., Markoski, K. A., Miraglia, P., Mott, V. L., Robberson, W. M., Santos, J. A., Sprachman, M. M., Swierk, P., Tate, S., Witinski, M. F., Kratchman, L. B., & Michel, A. P. M. Field-portable microplastic sensing in aqueous environments: a perspective on emerging techniques. Sensors, 21(10), (2021): 3532, https://doi.org/10.3390/s21103532.
    Description: Microplastics (MPs) have been found in aqueous environments ranging from rural ponds and lakes to the deep ocean. Despite the ubiquity of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. Although standards exist for MP sample collection and preparation, methods of MP analysis vary considerably and produce data with a broad range of data content and quality. The need for extensive analysis-specific sample preparation in current technology approaches has hindered the emergence of a single technique which can operate on aqueous samples in the field, rather than on dried laboratory preparations. In this perspective, we consider MP measurement technologies with a focus on both their eventual field-deployability and their respective data products (e.g., MP particle count, size, and/or polymer type). We present preliminary demonstrations of several prospective MP measurement techniques, with an eye towards developing a solution or solutions that can transition from the laboratory to the field. Specifically, experimental results are presented from multiple prototype systems that measure various physical properties of MPs: pyrolysis-differential mobility spectroscopy, short-wave infrared imaging, aqueous Nile Red labeling and counting, acoustophoresis, ultrasound, impedance spectroscopy, and dielectrophoresis.
    Description: We greatly thank our funding agencies: Gerstner Philanthropies (to A.P.M.M.), the Richard Saltonstall Charitable Foundation (to A.P.M.M.), and the Wallace Research Foundation (to A.P.M.M. and S.S.H.). Funding for M.G.B. was provided by a Draper Fellowship and to B.C.C. by an MIT Martin Fellowship. Draper thanks EPA region 9 for their partnership and support through a Cooperative Research and Development Agreement, an industry/government agreement regarding funding and personnel contributions of time and expertise.
    Keywords: Microplastics ; Plastic pollution ; Sensors ; Analytical chemistry ; Environment ; Water ; Ocean ; Marine pollution ; Polymers ; Freshwater ; Aqueous solutions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Michel, A. P. M., Morrison, A. E., Colson, B. C., Pardis, W. A., Moya, X. A., Harb, C. C., & White, H. K. Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type. Optics Express, 28(12), (2020): 17741-17756, doi:10.1364/OE.393231.
    Description: The identification of plastic type is important for environmental applications ranging from recycling to understanding the fate of plastics in marine, atmospheric, and terrestrial environments. Infrared reflectance spectroscopy is a powerful approach for plastics identification, requiring only optical access to a sample. The use of visible and near-infrared wavelengths for plastics identification are limiting as dark colored plastics absorb at these wavelengths, producing no reflectance spectra. The use of mid-infrared wavelengths instead enables dark plastics to be identified. Here we demonstrate the capability to utilize a pulsed, widely-tunable (5.59 - 7.41 µm) mid-infrared quantum cascade laser, as the source for reflectance spectroscopy, for the rapid and robust identification of plastics. Through the application of linear discriminant analysis to the resulting spectral data set, we demonstrate that we can correctly classify five plastic types: polyethylene terephthalate (PET), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS), with a 97% accuracy rate.
    Description: Richard Saltonstall Charitable Foundation; National Academies Keck Futures Initiative (NAKFI DBS13).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...