ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: This invention is a means of delivering a drug, or payload, to cells using non-covalent associations of the payload with nano-engineered scaffolds; specifically, functionalized single-walled carbon nanotubes (SWNTs) and their derivatives where the payload is effectively sequestered by the nanotube's addends and then delivered to the site (often interior of a cell) of interest. Polyethylene glycol (PEG) and other water-soluble organic molecules have been shown to greatly enhance the solubility of SWNTs in water. PEG groups and other water-solubilizing addends can act to sequester (sponge) molecules and deliver them into cells. Using PEG that, when attached to the SWNTs, the SWNT/PEG matrix will enter cells has been demonstrated. This was visualized by the addition of fluorescein isothiocyanate (FITC) to the SWNT/PEG matrix. Control studies showed that both FITC alone and FITC/PEG did not enter the cells. These observations suggest that the FITC is highly associated with the SWNT/PEG matrix that brings the FITC into the cells, allowing visualization of SWNTs in cells. The FITC is not covalently attached, because extended dialysis in hot DMF will remove all fluorescence quickly (one week). However, prolonged dialysis in water (1-2 months) will only slowly diminish the fluorescence. This demonstrates that the SWNT/PEG matrix solubilizes the FITC by sequestering it from the surrounding water and into the more solubilizing organic environment of the SWNT/PEG matrix of this type. This can be extended for the sequestering of other molecules such as drugs with PEG and other surfactants.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24504-1 , NASA Tech Briefs, March 2012; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-16
    Description: An infrared, heat-sensing catheter particularly useful for identifying potentially fatal arterial plaques in patients with disease of the coronary or other arteries and its use are detailed. In one embodiment, an infrared fiberoptic system (with or without ultrasound) is employed at the tip of the catheter to locate inflamed, heat-producing, atherosclerotic plaque, which is at greater risk for rupture, fissure, or ulceration, and consequent thrombosis and occlusion of the artery. In another embodiment, a catheter with an infrared detector (with or without ultrasound) employed at its tip will likewise locate inflamed heat-producing atherosclerotic plaque. The devices and methods of the invention may be used to detect abscesses, infection, and cancerous regions by the heat such regions differentially display over the ambient temperature of immediately adjacent tissues. The methods and devices of the invention may also be used to detect regions of cooler than ambient tissue in a vessel or organ which indicate cell death, thrombosis, cell death, hemorrhage, calcium or cholesterol accumulations, or foreign materials.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24565-1 , NASA Tech Briefs, September 2010; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...