ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-03
    Description: Introduction: Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of plasma cells (PCs) in the bone marrow (BM). Over 50% of patients die within 5 years of diagnosis. The transition from normal PCs to active MM, via premalignant condition (monoclonal gammopathy of undetermined significance; MGUS), consists of many oncogenic events, including upregulation of cyclin D1 and IRF4 genes, as well as activating mutations in NRAS, and KRAS. Despite recent advances in oncogenomics, further studies are needed to identify critical players in MM pathogenesis that could be targeted for pharmacological intervention to improve outcome. Recently, aberrations in epigenetic modifications, including DNA modifications and miRNA expression have been shown to play a crucial role in development and progression of MM. miRNAs are short non-coding RNAs that bind to complementary sequences on target messenger RNA (mRNAs) and downregulate their expression by inhibiting mRNA translation, or inducing its degradation. miRNA analysis, may lead to improved understanding of MM biology and classification, by establishing associations between gene expression changes and MM molecular and clinical features. To assess whether miRNA deregulation plays a critical role in the development of MM we performed small RNA next generation sequencing in the PCs isolated from 3 patients at the MGUS stage and after that they developed active disease, but still untreated. miRNA deregulation was also validated in an independent set of newly diagnosed MM patients (n.34) compared to non-cancer age matched donors (n.6). Mechanisms of transcriptional regulation and biological roles of the differentially expressed miRNAs were also analyzed. Methods: 1x106 CD138+ frozen PCs (purity〉90%) from different 3 donors before and after the disease development were used for the analysis. RNA was extracted with RNA-DNA-protein kit (Norgen Biotek) and 0.8µg of total RNA was used to generate the cDNA libraries using TruSeq Small RNA Library Preparation Kit. The obtained cDNA libraries were sequenced on an ILLUMINA system through the OSU Genomic Shared Resource (GSR). Myeloma cells (MM.1S) were treated with pan-HDACi for 24 hours and total miRNA expression was analyzed by nCounter microRNA array (NanoString Technologies, Inc.). miRNA deregulation upon use of several pan-HDAC'i in clinical use (LBH589, SAHA and AR-42) were validated in 4 different cell lines and in the MM cells of newly diagnosed MM patients. Chromatin immunoprecipitation, silencing RNA for specific histone deacetylase enzymes (HDACI, HDAC2, HDAC3, and HDAC6), western blot analysis, luciferase assays, stem loop RT-PCR, q-RT-PCR and cell proliferation assays were also performed. Results: We found that several miRNAs are commonly deregulated during disease transition. Some of these miRNAs, including miR-223, miR-221, miR-222, miR-92a and miR-93 (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-02
    Description: Introduction: Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Approximately, 80,000 people have died of the disease in the United States and 25,000 new cases are registered every year. Majority of patients develop resistance to current therapeutic treatments and die within 5-10 years of diagnosis. Thus, need of novel therapeutic intervention is extremely urgent. Although the field of oncolytic virotherapy (OV) based on using viruses with natural or engineered tumor selective replication to intentionally infect and kill tumor cells has been extensively explored for the treatment of solid tumors, only few data are available for the treatment of hematopoietic malignancies. Our laboratory was one of the first to show that OV using Reovirus can be an effective therapeutic strategy for the treatment of MM in vitro and in MM patients. In this work we aim at exploring the possibility of using genetically engineered HSV1 (Herpes Simplex Virus) for the treatment of MM. HSV1 is an enveloped, double stranded DNA virus. Engineered HSV1 (HSVQ) has both copies of viral gene important in viral replication in normal cells viz., ICP 34.5 gene deleted and has one copy of GFP inserted into viral ICP6 gene. Such engineered virus has been used for cancer cell selective killing in preclinical and clinical studies for the treatment of several types of solid tumors including melanoma and glioblastoma multiforme. In this study, we investigated the biological and preclinical impact of HSVQ on MM cell in vitro and in vivo. Method: Recombinant HSVQ was amplified in African green monkey kidney epithelial Vero cells, purified by sucrose density gradient centrifugation and titrated by plaque assay on Vero cells. Several MM cell lines (MM1.S, U266, RPMI8226, L363, NIH-H929) were infected with HSVQ at Multiplicity of Infection (MOI) 0.01 to 5. Fluorescence microscopy and flow cytometry analysis were used to assess MM cell infectivity with the virus. RT-PCR was performed to detect presence of viral genome in MM cell lines. Viral replication assays were also performed. Cell proliferation and apoptotic assays including MTT Assay, Tryphan Blue exclusion test, LIVE/DEAD cell viability staining and Annexin/7-AAD assays were done to determine viability of virus infected MM cells. Western Blot analysis was carried out to determine endoplasmic reticulum (ER) stress response mediated by ERK, Hsp90, Bip/GRP78, Hsp40 and apoptosis in HSVQ treated MM cells. Total bone marrow (BM) cells obtained from MM patients were infected with HSVQ and multi parametric flow analysis was performed to determine infectivity and specific killing of CD138+ MM cells by the virus. To study in vivo anti-tumorigenic properties of HSVQ, 12.5 x106 GFP/Luc + MM1.S or NIH-H929 cells were subcutaneously injected into the right flank of 20 NOD-SCID mice. Two weeks after injection, mice with comparable size tumors were randomly divided (5 animal for each treatment group) and treated twice with 1x107PFU (Plaque Forming Unit) HSVQ for 2 weeks or with saline. Tumor growth was measured to determine anti tumorigenic effect of HSVQ on MM tumors. Results and Conclusion: Fluorescence microscopy and flow cytometry revealed that MM cell lines can be effectively infected with and killed by HSVQ even at MOI as low as 0.1. Under such conditions, Western Blot analysis revealed increased BAX expression, decreased BCL2 expression and cleavage of Caspase 3 and PARP indicating apoptosis of virus infected cells. Interestingly, multi parametric flow analysis revealed that HSVQ specifically infects and kills CD138+ MM plasma cells in a total population of BM cellular fraction isolated from MM patients. Moreover in vivo preclinical data show that HSVQ dramatically reduces tumor volume (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-13
    Description: INTRODUCTION: Pelareorep is the infusible form of human reovirus (RV). Our single-agent phase 1 RV trial in relapsed multiple myeloma (MM) showed that pelareorep treatment selectively infected MM cells, as viral RNA was found in myeloma cells and not the bone marrow (BM) stroma. However, we did not observe apoptosis. Our ongoing phase 1 trial, which combines the proteasome inhibitor carfilzomib with RV, has demonstrated RV infection, apoptosis, and clinical responses. We investigated the molecular mechanisms behind the role of a PI (carfilzomib) in this setting. RESULTS: In all MM cell lines we tested (n=4), independently from their sensitivity to RV infection (Stiff et al., Mol Cancer Ther, 2016), viral replication and apoptosis was impaired when MM cells were directly exposed to PIs (carfilzomib and bortezomib). When this experiment was repeated in the setting of the bone marrow cellular fraction or peripheral blood mononuclear cells (PBMCs), it had the opposite effect, as the addition of PI to RV increased RV replication and apoptosis in MM cells. When we washed PBMCs after overnight exposure to RV+PI or to either single agent, then added MM cells, we observed higher infection and apoptosis in cancer cells co-cultured with RV+PI compared to levels from PBMCs treated with each of the single agents, suggesting that PIs increase the ability of PBMCs to serve as a reservoir for infectious reovirus. Monocytes (CD14+) can engage in phagocytosis of reovirus (Berkeley et al., Cancer Immunol Res, 2018), and accordingly we found that RV genome and capsid protein production were detected in CD14+ cells, but not in CD14-depleted PBMCs, and increased upon PI treatment compared to that in RV-treated CD14+ cells. Given that the NF-κB complex is a key proinflammatory signaling pathway associated with the early innate-antiviral immune response, and because PIs can block the degradation of the NF-κB inhibitor IκBα upon phosphorylation, we investigated the effect of the specific IκBα inhibitor Bay-11 in RV viral replication. Our data show that either PI or Bay-11 can inhibit RV-induced IκBα phosphorylation and its subsequent degradation upon RV infection in CD14+ cells, an effect associated with higher capsid formation in RV-treated CD14+ cells in combination with PI or Bay-11, compared to levels from RV alone. Cytokine profiling in PBMCs and CD14+ cells treated with RV in combination with either PI or Bay-11 showed a significant decrease in IFN-α and IFN-β (IFNs) levels and a concomitant increase in RV replication, in contrast to levels from RV alone (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-13
    Description: Introduction: 18Fluoro-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is one of the most widely used imaging techniques to detect multiple myeloma (MM). Intracellular FDG uptake depicts in vivo metabolic activity, which can be seen in both malignant and non-malignant cells, resulting in limited sensitivity and specificity. Our group showed preclinically that tracing MM dissemination using a CD38-directed human antibody, daratumumab, that is radioconjugated with copper-64 via the chelator DOTA (64Cu-DOTA-Dara), led to improved sensitivity and specificity over that of FDG (Caserta et al, Blood 2018). Herein, we report the results of a Phase 1 trial (NCT#03311828) designed to 1) assess the safety and feasibility of 64Cu-DOTA-Dara PET/CT and 2) to evaluate and characterize the ability of 64Cu-DOTA-Dara to accurately detect or exclude MM lesions compared with FDG PET/CT. Methods: Patients with biopsy-proven MM and/or a plasmacytoma received an FDG PET/CT scan within 60 days of enrollment. On Day 0, patients were infused with unlabeled ("cold") Dara at one of four dose levels (0 mg, 10 mg, 45 mg, 95 mg) to optimize biodistribution of radioconjugated 64Cu-DOTA-Dara, especially in the liver and the spleen. Within 6 hours of unlabeled Dara administration, patients received 64Cu-DOTA-Dara at a dose of 13.63-16.68 mCi (~5 mg). Whole-body PET scans were obtained at 24 hours and at 48 hours (the latter scan encompassing known tumors). 64Cu-DOTA-Dara standardized uptake values (SUV) were evaluated in MM lesions and normal organs, which were then compared with values from standard FDG PET/CT. Biopsies were performed on accessible discordant lesions. Results: A total of 10 Dara-naïve patients were imaged. Patients were treated with 0 (n=3), 10 (n=3), 45 (n=3), or 95 mg (n=1) of unlabeled Dara. Four patients had newly diagnosed disease, one had biochemical relapse, one had a recurrent plasmacytoma by MRI, and four had possible recurrence by standard PET/CT. No significant adverse events were observed from either cold or 64Cu-DOTA-Dara. With the exception of the one patient with a recurrent plasmacytoma, radiolabeled antibody was eliminated from systemic circulation in subjects analyzed at the first three dose levels within 30 min post injection. In the patient with a recurrent plasmacytoma, the radiolabeled antibody was elevated in the blood for over two days. One newly diagnosed patient had extensive disease by FDG PET and had a biopsy-proven target lesion in the sternum, which had an SUVmax of 14.7 on 64Cu-DOTA-Dara PET/CT vs. 3.3 onFDG PET/CT. A second biopsy from the same patient was taken from a discordant iliac crest lesion (positive for 64Cu-DOTA-Dara but negative for FDG PET/CT) that showed 20-30% MM cell infiltration. In another patient, an iliac crest lesion was 64Cu-DOTA-Dara positive and FDG-negative; biopsy revealed 6% plasmacytosis in the bone. A third patient had an FDG PET/CT positive pleural lesion with an SUVmax of 8.98 and negative on 64Cu-DOTA-Dara (Figure 1A). The lesion did not show recurrence upon biopsy. Furthermore, 64Cu-DOTA-Dara PET/CT yielded superior imaging of bone lesions in the calvarium (Figure 1B). Escalating doses of unlabeled Dara decreased liver and spleen uptake by 64Cu-DOTA-Dara. Conclusions: In this ongoing study, 64Cu-DOTA-Dara PET/CT imaging is to date safe and provides whole body imaging of MM. Further dose escalation of cold Dara (145 mg, 195 mg) is planned to optimize background interference. This modality has the potential to improve sensitivity and specificity over FDG PET/CT scanning in early-stage MM as well as in recurrent disease. Disclosures Krishnan: Celgene, Janssen, Sanofi, BMS: Consultancy; Sutro BioPharma, zPredicta: Consultancy; Amgen, Takeda: Speakers Bureau; Celgene, Z Predicta: Other: Stock Ownership; Takeda: Research Funding. Palmer:Gilead Sciences: Consultancy. Rosenzweig:Celgene, Takeda: Speakers Bureau. Wu:ImaginAb, Inc.: Consultancy, Other: Board Member.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-22
    Description: The conserved Histidine 301 in switch II of Geobacillus stearothermophilus IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons. All mutants promoted 30S initiation complex (30S IC) formation with wild type (wt) efficiency but upon 30S IC association with the 50S subunit, the fMet-tRNA reacted with puromycin to different extents depending upon the IF2 mutant present in the complex (wtIF2 ≥ to IF2H301Q 〉 IF2H301R 〉〉〉 IF2H301S, IF2H301L and IF2H301Y) whereas only fMet-tRNA 30S-bound with IF2H301Q retained some ability to form initiation dipeptide fMet-Phe. Unlike wtIF2, all mutants, regardless of their ability to hydrolyze GTP, displayed higher affinity for the ribosome and failed to dissociate from the ribosomes upon 50S docking to 30S IC. We conclude that different amino acids substitutions of His301 cause different structural alterations of the factor, resulting in disparate phenotypes with no direct correlation existing between GTPase inactivation and IF2 failure to dissociate from ribosomes.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Introduction: Daratumumab (HuMax-CD38, Dara) is an immunoglobulin G1 kappa (IgG1k) human monoclonal antibody that binds a CD38 epitope that has been recently approved by the Food and Drugs Administration as a single agent for the treatment of Multiple Myeloma (MM). Multiple myeloma (MM) is a plasma cell disorder affecting approximately 83,000 US citizens with 30,330 new cases per year in the US. The discovery of intra-clonal heterogeneity strengthens the scientific rationale of using novel therapy combinations to overcome mechanisms of resistance. While CD38 participates in NAD+ hydrolysis generating adenosine and influences intracellular calcium homeostasis through cADPR and NAADP synthesis, CD38 facilitates bone marrow (BM) homing of plasma cells through interaction with CD31 which is highly expressed in MM BM stromal cells (BMSCs) and macrophages (BM-M). Since adhesion of MM cells to stromal cells induces cell adhesion mediated drug resistance (CAM-DR), in this work, tested whether CD38 internalization after Daratumumab treatment impairs stromal cell adhesion, sensitizing MM cells to other drugs including proteasome inhibitors. Methods:Flow cytometry analysis and single cell flow analysis was done to measure the extent of surface CD38 internalization into MM cells (MM cell lines and primary cells) in vitro and ex-vivo. Adhesion assays were performed using MM cell lines treated with Daratumumab and co-cultured with BMSCs and BM-M. Apoptotic assays including cell proliferation and Annexin-V/PI staining were done to assess proteasome inhibitor induced apoptosis (bortezomib, BTZ) of MM cells pretreated with Daratumumab in the presence or absence of BM stroma. Chou-Talalay synergy analysis was used to assess the ability of Daratumumab to synergize with BTZ. Results:Single cell flow analysis revealed surface CD38 internalization into MM cell lines (MM1.S, H929, L363, RPMI-8226) and in primary myeloma cells upon incubation with increasing doses of Daratumumab. Our data show that MM cell lines and primary CD138+ MM plasma cells (MM-PCs) revealed loss of adhesion in a dose and time dependent fashion in co-culture experiments with BMSc. Moreover our data indicate that both BMSCs and BM-M protect MM cells to BTZ treatments. In order to investigate whether loss of adhesion of MM cells deprives them of protection, MM cell lines and primary cells were treated with Daratumumab and co-cultured with BM stroma and then treated with BTZ. Interestingly, it was observed that although stromal cells could protect MM cells from induced apoptosis, it failed to do so when MM cells were pretreated with Daratumumab. A more than two-fold increase in MM cell apoptosis was observed with Daratumumab-BTZ combination compared to the single agent treatments. This indicates that Daratumumab potentiates BTZ killing of MM cells. Conclusion:Daratumumab in combination with both proteasome inhibitors and immune modulators (IMiDs) are synergistic as evidenced by the results of CASTOR and POLLUX trials respectively, but the mechanisms of killing and resistance will likely be different. The main anti-MM effect of Daratumumab has so far been attributed to its antibody-dependent cellular cytotoxicity, complement dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis activities and in promoting T cell expansion in relapsed/refractary MM patients enrolled in Daratumumab monotherapy trials. Our data indicate that Daratumumab potentiates the BTZ killing of MM cells via CD38 internalization, providing rationale to further explore CD38 targeting using other drugs or cell therapies. Disclosures Hofmeister: Celgene: Research Funding; Karyopharm Therapeutics: Research Funding; Arno Therapeutics, Inc.: Research Funding; Incyte, Corp: Membership on an entity's Board of Directors or advisory committees; Signal Genetics, Inc.: Membership on an entity's Board of Directors or advisory committees; Janssen: Pharmaceutical Companies of Johnson & Johnson: Research Funding; Takeda Pharmaceutical Company: Research Funding; Teva: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: Introduction: Multiple Myeloma (MM) cell survival strictly depends on the interaction with multiple cell types in the bone marrow (BM), collectively referred to as the MM microenvironment (MM-ME). CD84 (SLAMF5) belongs to the signaling lymphocyte activation molecule family of immunoreceptors; previous data from our group have shown that CD84 mediates malignant B cells and their ME (Marom et al. 2017); however, its role within the MM-ME has not yet been investigated. Results: Using the MMRF CoMMpass IA9 dataset, we found that CD84 mRNA expression is low or absent in CD138+MM cells isolated from 660 newly diagnosed patients. In agreement with these data, flow analysis showed an absence of CD84 expression in all MM cell lines tested (n=9) and minimal surface expression (5.5-13%) in primary cells (n=3). However, a significantly higher expression of CD84 was detected on the surface of BM and peripheral blood (PB) monocytic fractions (CD14+) (76-97%) compared to that of matched CD14 negative fractions (2-9%) obtained from 16 different MM patients (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-15
    Description: Key Points Daratumumab conjugated with 64Cu efficiently binds to CD38 on myeloma cells and was mainly detected in the bones of mice. PET/CT based on 64Cu-radiolabeled daratumumab displays a higher resolution and specificity for detecting myeloma than does 18F-FDG PET/CT.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-11-19
    Description: Abstract 704 Interleukin (IL)-15 is critical for the differentiation, proliferation, activation and survival of large granular lymphocytes (LGL). Malignant blasts from patients with acute LGL leukemia (LGLL) can express membrane bound IL-15 and often require IL-15 or IL-2 to survive and expand in vitro, suggesting a pivotal role of IL-15 in the genesis of LGLL in vivo. Indeed, 30% of mice engineered to over express IL-15 develop LGLL (J Exp Med 193:219-231, 2001), suggesting that IL-15 is a proto-oncogene. The present study examined the mechanism by which this may occur in mouse and in man. We observed ~2.5-fold increased levels of DNA methyltransferase 3b (Dnmt3b) in IL-15tg mice with LGLL compared to wild type (Wt) splenocytes (2.6 ± 0.6 -fold higher, N = 3 each, P =.03) and a ~2-fold increased levels of global DNA methylation (GDM) compared to Wt splenocytes (% global DNA levels measured by mass spec as % 5mC/(5mC+2dC): 3.6 ± 0.11%, N = 4 for IL-15tg LGLL; 1.5 ± 0.08%, N = 4 for Wt, P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...