ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-15
    Description: The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the baryonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of fast-rotator early-type galaxies by Cappellari et al. based on ATLAS 3D and SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) data, which was the first homogenous study of this kind, reaching ~4 R e , where DM begins to dominate the total mass budget. We find the early-type galaxies to follow an MDA relation similar to spiral galaxies, but systematically offset. Also, while the slopes of the mass density profiles inferred from galaxy dynamics show consistency with those expected from their stellar content assuming MOND, some profiles of individual galaxies show discrepancies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-09
    Description: We analyse the morphological structures in galaxies of the ATLAS 3D sample by fitting a single Sérsic profile and decomposing all non-barred objects (180 of 260 objects) in two components parametrized by an exponential and a general Sérsic function. The aim of this analysis is to look for signatures of discs in light distributions of nearby early-type galaxies and compare them to kinematic properties. Using Sérsic index from single-component fits for a distinction between slow and fast rotators, or even late- and early-type galaxies, is not recommended. Assuming that objects with n  〉 3 are slow rotators (or ellipticals), there is only a 22 per cent probability to correctly classify objects as slow rotators (or 37 per cent of previously classified as ellipticals). We show that exponential sub-components, as well as light profiles fitted with only a single component of a low Sérsic index, can be linked with the kinematic evidence for discs in early-type galaxies. The median disc-to-total light ratio for fast and slow rotators is 0.41 and 0.0, respectively. Similarly, the median Sérsic indices of the bulge (general Sérsic component) are 1.7 and 4.8 for fast and slow rotators, respectively. Overall, discs or disc-like structures are present in 83 per cent of early-type galaxies which do not have bars, and they show a full range of disc-to-total light ratios. Discs in early-type galaxies contribute with about 40 per cent to the total mass of the analysed (non-barred) objects. The decomposition into discs and bulges can be used as a rough approximation for the separation between fast and slow rotators, but it is not a substitute, as there is only a 59 per cent probability to correctly recognize slow rotators. We find trends between the angular momentum and the disc-to-total light ratios and the Sérsic index of the bulge, in the sense that high angular momentum galaxies have large disc-to-total light ratios and small bulge indices, but there is none between the angular momentum and the global Sérsic index. We investigate the inclination effects on the decomposition results and confirm that strong exponential profiles can be distinguished even at low inclinations, but medium-size discs are difficult to quantify using photometry alone at inclinations lower than ~50°. Kinematics (i.e. projected angular momentum) remains the best approach to mitigate the influence of the inclination effects. We also find weak trends with mass and environmental density, where disc-dominated galaxies are typically less massive and found at all densities, including the densest region sampled by the ATLAS 3D sample.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-09
    Description: We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated 12 CO (1–0, 2–1), 13 CO (1–0, 2–1), HCN (1–0) and HCO + (1–0) observations and new 12 CO (3–2) single-dish data. From these, we derive for the first time the average kinetic temperature, H 2 volume density and column density of the emitting gas in a significant sample of ETGs, using a non-local thermodynamical equilibrium theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO + lines, the two sets of lines are treated separately. For most of the molecular gas-rich ETGs studied here, the CO transitions can be reproduced with kinetic temperatures of 10–20 K, H 2 volume densities of 10 3–4 cm –3 and CO column densities of $10^{18\text{--}20}$ cm –2 . The physical conditions corresponding to the HCN and HCO + gas component have large uncertainties and must be considered as indicative only. We also compare for the first time the predicted CO spectral line energy distributions and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation conditions in 13 of our 18 ETGs appear analogous to those in the centre of the Milky Way, hence the star formation activity driving these conditions is likely of a similar strength and nature. Such results have never been obtained before for ETGs and open a new window to explore further star-formation processes in the Universe. The conclusions drawn should nevertheless be considered carefully, as they are based on a limited number of observations and on a simple model. In the near future, with higher CO transition observations, it should be possible to better identify the various gas components present in ETGs, as well as more precisely determine their associated physical conditions. To achieve these goals, we show here from our theoretical study, that mid- J CO lines [such as the 12 CO (6–5) line] are particularly useful.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-09
    Description: We present the Combined Array for Research in Millimeter Astronomy (CARMA) ATLAS 3D molecular gas imaging survey, a systematic study of the distribution and kinematics of molecular gas in CO-rich early-type galaxies. Our full sample of 40 galaxies (30 newly mapped and 10 taken from the literature) is complete to a 12 CO(1–0) integrated flux of 18.5 Jy km s –1 , 1 and it represents the largest, best studied sample of its type to date. A comparison of the CO distribution of each galaxy to the g  – r colour image (representing dust) shows that the molecular gas and dust distributions are in good agreement and trace the same underlying interstellar medium. The galaxies exhibit a variety of CO morphologies, including discs (50 per cent), rings (15 per cent), bars+rings (10 per cent), spiral arms (5 per cent) and mildly (12.5 per cent) and strongly (7.5 per cent) disrupted morphologies. There appear to be weak trends between galaxy mass and CO morphology, whereby the most massive galaxies in the sample tend to have molecular gas in a disc morphology. We derive a lower limit to the total accreted molecular gas mass across the sample of 2.48  x 10 10 M , or approximately 8.3  x 10 8 M per minor merger within the sample, consistent with minor merger stellar mass ratios.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-09
    Description: For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet, since the discovery by the Einstein Observatory of such X-ray haloes around early-type galaxies, the precise amount of hot gas around these galaxies still remains a matter of debate. By combining homogeneously derived photometric and spectroscopic measurements for the early-type galaxies observed as part of the ATLAS 3D integral field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution (for 47 and 19 objects, respectively) we conclude that the hot gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray haloes with luminosity L X, gas and temperature T values that are well in line with what is expected if the hot gas emission is sustained by the thermalization of the kinetic energy carried by the stellar mass loss material, fast rotators tend to display L X, gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kinetic energy (traced by the stellar velocity dispersion) as observed in the case of slow rotators. Such a discrepancy between the hot gas content of slow and fast rotators would appear to reduce, or even disappear, for large values of the dynamical mass (above ~3  x 10 11 M ), with younger fast rotators displaying also somewhat larger L X, gas values possibly owing to the additional energy input from recent supernovae explosions. Considering that fast rotators are likely to be intrinsically flatter than slow rotators, and that the few L X, gas -deficient slow rotators also happen to be relatively flat, the observed L X, gas deficiency in these objects would support the hypothesis whereby flatter galaxies have a harder time in retaining their hot gas, although we suggest that the degree of rotational support could further hamper the efficiency with which the kinetic energy of the stellar mass loss material is thermalized in the hot gas. We discuss the implications that a different hot gas content could have on the fate of both acquired and internally produced gaseous material, considering in particular how the L X, gas deficiency of fast rotators would make them more capable to recycle the stellar mass loss material into new stars than slow rotators. This would be consistent with the finding that molecular gas and young stellar populations are detected only in fast rotators across the entire ATLAS 3D sample, and that fast rotators tend to have a larger specific dust mass content than slow rotators.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-24
    Description: We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the atlas 3D survey of early-type galaxies (ETGs). We find that 51 ± 4 per cent of the ETGs in our sample contain nuclear radio emission with luminosities as low as 10 18 W Hz –1 . Most of the nuclear radio sources have compact (25–110 pc) morphologies, although ~10 per cent display multicomponent core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the atlas 3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at subarcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in contrast to popular assumptions in the literature that the presence of a compact, unresolved, nuclear radio continuum source universally signifies the presence of an AGN. Additionally, we examine the relationships between the 5 GHz luminosity and various galaxy properties including the molecular gas mass and – for the first time – the global kinematic state. We discuss implications for the growth, triggering, and fuelling of radio AGNs, as well as AGN-driven feedback in the continued evolution of nearby ETGs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-04
    Description: We analyse the sizes, colour gradients and resolved stellar mass distributions for 36 massive and passive galaxies in the cluster XMMUJ2235-2557 at z  = 1.39 using optical and near-infrared Hubble Space Telescope ( HST ) imaging. We derive light-weighted Sérsic fits in five HST bands ( i 775 , z 850 , Y 105 , J 125 , H 160 ), and find that the size decreases by ~20 per cent going from i 775 to H 160 band, consistent with recent studies. We then generate spatially resolved stellar mass maps using an empirical relationship between $M_{{\ast }}/L_{H_{160}}$ and ( z 850  –  H 160 ) and use these to derive mass-weighted Sérsic fits: the mass-weighted sizes are ~41 per cent smaller than their rest-frame r -band counterparts compared with an average of ~12 per cent at z  ~ 0. We attribute this evolution to the evolution in the $M_{{\ast }}/L_{H_{160}}$ and colour gradient. Indeed, as expected, the ratio of mass-weighted to light-weighted size is correlated with the M * / L gradient, but is also mildly correlated with the mass surface density and mass-weighted size. The colour gradients ( z  –  H ) are mostly negative, with a median value of ~0.45 mag dex –1 , twice the local value. The evolution is caused by an evolution in age gradients along the semimajor axis ( a ), with age  = dlog ( age )/dlog ( a ) ~– 0.33, while the survival of weaker colour gradients in old, local galaxies implies that metallicity gradients are also required, with Z  = dlog ( Z )/dlog ( a ) ~– 0.2. This is consistent with recent observational evidence for the inside–out growth of passive galaxies at high redshift, and favours a gradual mass growth mechanism, such as minor mergers.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-04
    Description: We report a tight linear relation between the H i circular velocity measured at 6 R e and the stellar velocity dispersion measured within 1 R e for a sample of 16 early-type galaxies with stellar mass between 10 10 and 10 11 M . The key difference from previous studies is that we only use spatially resolved v circ (H i ) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that v circ (H i )= 1.33 e with an observed scatter of just 12 per cent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The v circ (H i )– e relation is shallower than those based on v circ measurements obtained from stellar kinematics and modelling at smaller radius, implying that v circ declines with radius – as in bulge-dominated spirals. Indeed, the value of v circ (H i ) is typically 25 per cent lower than the maximum v circ derived at ~0.2 R e from dynamical models. Under the assumption of power-law total density profiles   r – , our data imply an average logarithmic slope 〈〉 = 2.18 ± 0.03 across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-18
    Description: We observed the lenticular galaxy NGC 3998 with the Mitchell Integral-Field Spectrograph and extracted line-of-sight velocity distributions out to three half-light radii. We constructed collisionless orbit models in order to constrain NGC 3998's dark and visible structure, using kinematics from both the Mitchell and SAURON instruments. We find NGC 3998 to be almost axisymmetric, seen nearly face-on with a flattened intrinsic shape – i.e. a face-on fast rotator. We find an I -band mass-to-light ratio of $4.7_{-0.45}^{+0.32}$ in good agreement with previous spectral fitting results for this galaxy. Our best-fitting orbit model shows a both a bulge and a disc component, with a non-negligible counter-rotating component also evident. We find that relatively little dark matter is needed to model this galaxy, with an inferred dark mass fraction of just $(7.1^{+8.1}_{-7.1}){\rm per cent}$ within one half-light radius.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-17
    Description: NGC 4258 is the galaxy with the most accurate (maser-based) determination for the mass of the supermassive black hole (SMBH) in its nucleus. In this work, we present a two-dimensional mapping of the stellar kinematics in the inner 3.0 arcsec 3.0 arcsec = 100 pc 100 pc of NGC 4258 using adaptive-optics observations obtained with the Near-Infrared Integral Field Spectrograph of the Gemini North telescope at an 0.11 arcsec (4 pc) angular resolution. The observations resolve the radius of influence of the SMBH, revealing an abrupt increase in the stellar velocity dispersion within 10 pc from the nucleus, consistent with the presence of an SMBH there. Assuming that the galaxy nucleus is in a steady state and that the velocity dispersion ellipsoid is aligned with a cylindrical coordinate system, we constructed a Jeans anisotropic dynamical model to fit the observed kinematics distribution. Our dynamical model assumes that the galaxy has axial symmetry and is constructed using the multi-Gaussian expansion method to parametrize the observed surface brightness distribution. The Jeans dynamical model has three free parameters: the mass of the central SMBH ( M • ), the mass–luminosity ratio ( k = M/L) of the galaxy and the anisotropy of the velocity distribution. We test two types of models: one with constant velocity anisotropy, and another with variable anisotropy. The model that best reproduces the observed kinematics was obtained considering that the galaxy has radially varying anisotropy, being the best-fitting parameters with 3 significance $M_\bullet =4.8^{+0.8}_{-0.9}\times 10^7\,{\rm M_{\odot }}$ and $\Gamma _k = 4.1^{+0.4}_{-0.5}$ . This value for the mass of the SMBH is just 25 per cent larger than that of the maser determination and 50 per cent larger that a previous stellar dynamical determination obtained via Schwarzschild models for long-slit data that provides an SMBH mass 15 per cent lower than the maser value.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...