ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Keywords: Oceanography. ; Water. ; Hydrology. ; Cogeneration of electric power and heat. ; Fossil fuels. ; Geology. ; Physical geography. ; Business. ; Management science. ; Ocean Sciences. ; Water. ; Fossil Fuel. ; Geology. ; Earth System Sciences. ; Business and Management.
    Description / Table of Contents: Part I. A History of gas hydrate research -- Chapter 1. Gas Hydrate Research: From the Laboratory to the Pipeline -- Chapter 2. Shallow gas hydrates near 64° N, off Mid-Norway: Concerns regarding drilling and production technologies -- Chapter 3. Finding and using the world’s gas hydrates -- Part II. Gas Hydrate Fundamentals -- Chapter 4. Seismic rock physics of gas-hydrate bearing sediments -- Chapter 5. Estimation of gas hydrates in the pore space of sediments using inversion methods -- Chapter 6. Electromagnetic applications in methane hydrate reservoirs -- Part III. Gas Hydrate Drilling for Research and Natural Resources -- Chapter 7. Hydrate Ridge - A gas hydrate system in a subduction zone setting -- Chapter 8. Northern Cascadia Margin gas hydrates – Regional geophysical surveying, IODP drilling Leg 311 and cabled observatory monitoring -- Chapter 9. Accretionary wedge tectonics and gas hydrate distribution in the Cascadia forearc -- Chapter 10. Bottom Simulating Reflections below the Blake Ridge, western North Atlantic Margin -- Chapter 11. A review of the exploration, discovery, and characterization of highly concentrated gas hydrate accumulations in coarse-grained reservoir systems along the Eastern Continental Margin of India -- Chapter 12. Ulleung Basin Gas Hydrate Drilling Expeditions, Korea: Lithologic characteristics of gas hydrate-bearing sediments -- Chapter 13. Bottom simulating reflections in the South China Sea -- Chapter 14. Gas hydrate and fluid related seismic indicators across the passive and active margins off SW Taiwan -- Chapter 15. Gas Hydrate Drilling in the Nankai Trough, Japan -- Chapter 16. Alaska North Slope Terrestrial Gas Hydrate Systems: Insights from Scientific Drilling -- Part IV -- Arctic -- Chapter 17. Gas Hydrates on Alaskan Marine Margins -- Chapter 18. Gas Hydrate related bottom-simulating reflections along the west-Svalbard margin, Fram Strait -- Chapter 19. Occurrence and distribution of bottom simulating reflections in the Barents Sea -- Chapter 20. Svyatogor Ridge - A gas hydrate system driven by crustal scale processes -- Chapter 21. Gas hydrate potential in the Kara Sea -- Part V. Greenland and Norwegian Sea -- Chapter 22. Geophysical indications of gas hydrate occurrence on the Greenland continental margins -- Chapter 23. Gas hydrates in the Norwegian Sea -- Part VI. North Atlantic. Chapter 24. U.S. Atlantic Margin Gas Hydrates -- Chapter 25. Gas Hydrates and submarine sediment mass failure: A case study from Sackville Spur, offshore Newfoundland -- Chapter 26. Bottom Simulating Reflections and Seismic Phase Reversals in the Gulf of Mexico -- Chapter 27. Insights into gas hydrate dynamics from 3D seismic data, offshore Mauritania -- Part VII. South Atlantic -- Chapter 28. Distribution and Character of Bottom Simulating Reflections in the Western Caribbean Offshore Guajira Peninsula, Colombia -- Chapter 29. Gas hydrate systems on the Brazilian continental margin -- Chapter 30. Gas hydrate on the southwest African continental margin -- Chapter 31. Shallow gas hydrates associated to pockmarks in the Northern Congo deep-sea fan, SW Africa -- Part VIII. Pacific -- Chapter 32. Gas hydrate-bearing province off eastern Sakhalin slope -- Chapter 33. Tectonic BSR Hypothesis in the Peruvian margin: A forgotten way to see marine gas hydrate systems at convergent margins -- Chapter 34. Gas hydrate and free gas along the Chilean Continental Margin -- Chapter 35. New Zealand’s Gas Hydrate Systems -- Part IX. Indic -- Chapter 36. First evidence of bottom simulation reflectors in the western Indian Ocean offshore Tanzania -- Part X. Mediterranean Sea -- Chapter 37. A Gas Hydrate System of Heterogenous Character in the Nile Deep-Sea Fan -- Part XI. Black Sea -- Chapter 38. Gas hydrate accumulations in the Black Sea -- Part XII. Lake Baikal -- Chapter 39. The position of gas hydrates in the sedimentary strata and in the geological structure of Lake Baikal -- Part XIII. Antarctic -- Chapter 40. Bottom Simulating Reflector in the western Ross Sea Antarctica -- Chapter 41. Bottom Simulating Reflectors along the Scan Basin, a deep-sea gateway between the Weddell Sea (Antarctica) and Scotia Sea -- Chapter 42. Bottom Simulating Reflections in Antarctica -- Part XIV. Where Gas Hydrate Dissociates Seafloor Microhabitats Flourish. Chapter 43. Integrating fine-scale habitat mapping and pore water analysis in cold seep research: A case study from the SW Barents Sea.
    Abstract: This world atlas presents a comprehensive overview of the gas-hydrate systems of our planet with contributions from esteemed international researchers from academia, governmental institutions and hydrocarbon industries. The book illustrates, describes and discusses gas hydrate systems, their geophysical evidence and their future prospects for climate change and continental margin geohazards from passive to active margins. This includes passive volcanic to non-volcanic margins including glaciated and non-glaciated margins from high to low latitudes. Shallow submarine gas hydrates allow a glimpse into the past from the Last Glacial Maximum (LGM) to modern environmental conditions to predict potential changes in future stability conditions while deep submarine gas hydrates remained more stable. This demonstrates their potential for rapid reactions for some gas hydrate provinces to a warming world, as well as helping to identify future prospects for environmental research. Three-dimensional and high-resolution seismic imaging technologies provide new insights into fluid flow systems in continental margins, enabling the identification of gas and gas escape routes to the seabed within gas hydrate environments, where seabed habitats may flourish. The volume contains a method section detailing the seismic imaging and logging while drilling techniques used to characterize gas hydrates and related dynamic processes in the sub seabed. This book is unique, as it goes well beyond the geophysical monograph series of natural gas hydrates and textbooks on marine geophysics. It also emphasizes the potential for gas hydrate research across a variety of disciplines. Observations of bottom simulating reflectors (BSRs) in 2D and 3D seismic reflection data combined with velocity analysis, electromagnetic investigations and gas-hydrate stability zone (GHSZ) modelling, provide the necessary insights for academic interests and hydrocarbon industries to understand the potential extent and volume of gas hydrates in a wide range of tectonic settings of continental margins. Gas hydrates control the largest and most dynamic reservoir of global carbon. Especially 4D, 3D seismic but also 2D seismic data provide compelling sub-seabed images of their dynamical behavior. Sub-seabed imaging techniques increase our understanding of the controlling mechanisms for the distribution and migration of gas before it enters the gas-hydrate stability zone. As methane hydrate stability depends mainly on pressure, temperature, gas composition and pore water chemistry, gas hydrates are usually found in ocean margin settings where water depth is more than 300 m and gas migrates upward from deeper geological formations. This highly dynamic environment may precondition the stability of continental slopes as evidenced by geohazards and gas expelled from the sea floor. This book provides new insights into variations in the character and existence of gas hydrates and BSRs in various geological environments, as well as their dynamics. The potentially dynamic behavior of this natural carbon system in a warming world, its current and future impacts on a variety of Earth environments can now be adequately evaluated by using the information provided in the world atlas. This book is relevant for students, researchers, governmental agencies and oil and gas professionals. Some familiarity with seismic data and some basic understanding of geology and tectonics are recommended.
    Type of Medium: Online Resource
    Pages: XXI, 514 p. 309 illus., 294 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783030811860
    DDC: 551.46
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 13/ZSP-607(178)
    In: Proceedings of the ocean drilling program [Elektronische Ressource]
    Type of Medium: Series available for loan
    Pages: 1 CD-ROM , 1 Booklet (xvii, 40, 35 S.), 1 User Guide
    ISSN: 0884-5891
    Series Statement: Proceedings of the ocean drilling program [Elektronische Ressource] : Scientific results 178.2002
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 608 (Dec. 2008), p. 111-132 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The development of the semiconductor industry through the CMOS technology has been possible thanks to the unique properties of the silicon and silicon dioxide material. Nevertheless the continuous scaling of the device dimension and the increase of the integration level, i.e. the capability to follow for more than 20 years the so-called Moore’s law, has been enabled not only by the Si-SiO2 system, but also by the use of other materials. The introduction of new materials every generation has allowed the integration of sub-micron and now of nanometer scale devices: different types of dielectrics, like Si3N4 or doped-SiO2, to form spacer, barrier and separation layers; conductive films, like WSi2, TiSi2, CoSi2 and NiSi2, to build low resistive gates; metals, like W, Ti, TiN, to have low resistive contacts, or like Al or Cu, to have low resistive interconnects. Although the technology development has been mainly driven by the CMOS transistor downscaling, other devices and most of all Non-Volatile Memories (NVM) have been able to evolve due to the large exploitation of these materials. NVM today represent a large portion of the overall semiconductor market and one of the most important technologies for the mobile application segment. In particular the main technology line in the NVM field is represented by the Flash Memory. Flash memory cell is based on the concept of a MOS transistor with a Floating-Gate (FG). The writing/reading operations of the cell are possible thanks again to the unique properties of the SiO2 system, being a quasi-ideal dielectric at low electric field, enabling the Flash memory to store electrons for several years, and becoming a fair conductor at higher electric field by tunnel effect, thus allowing reaching fast programming speeds. Flash have now reached the integration of many billions of bits in one monolithic component with cell dimension of 0.008um2 at 45nm technology node, always based on the FG concept. Nevertheless Flash have technological and physical constraint that will make more difficult their further scaling, even if the scaling limits are still under debate. In this contest there is the industrial interest for alternative technologies that exploit new materials and concepts to go beyond the Flash technology, to allow better scaling, and to enlarge the memory performance. Hence other technologies, alternative to floating gate devices, have been proposed and are under investigation. These new proposals exploit different physical mechanisms and different materials to store the information: magnetism and magnetoresistive materials (e.g. Co, Ni, Fe, Mn) in magnetic memories or MRAM; ferroelectricity and perovskite materials (e.g. PbTixZr1-xO3 or SrBi2Ta2O9 or BaxSr1-xTiO3) in ferroelectric memories or FeRAM; phase change and chalcogenide materials (e.g. Ge2Sb2Te5 or AsInSbTe) in phase-change memory or PCM. Among these alternative NVM, PCM are one of the most promising candidates to become a mainstream NVM, having the potentiality to improve the performance compared to Flash - random access time, read throughput, direct write, bit granularity, endurance - as well as to be scalable beyond Flash technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 109 (1992), S. 493-504 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Microelectronic Engineering 15 (1991), S. 625-628 
    ISSN: 0167-9317
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 10 (1990), S. 23-30 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Detailed analysis of the morphology of Bacino Bannock, a deep-sea basin filled by a hypersaline brine, shows with unusual detail the effect on the ocean floor topography of the deformation and dissolution of a salt body under tectonic stress. Although salt diapirism occurs in the central part of the investigated area, the major cause of basin formation is dissolution of subsurface evaporites which creates negative relief that exceeds by about one order of magnitude the positive relief. The true shape of the deformed salt deposit is preserved as a result of the absence of a thick post-evaporites sedimentary cover.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Multichannel seismic reflection profiles from the continental rise west of the Antarctic Peninsula between 63° and 69°S show the growth of eight very large mound-shaped sedimentary bodies. MCS profiles and long-range side-scan sonar (GLORIA) images show the sea floor between mounds is traversed by channels originating in a dendritic pattern near the base of the continental slope. The mounds are interpreted as sediment drifts, constructed mainly from the fine-grained components of turbidity currents originating on the continental slope, entrained in a nepheloid layer within the ambient southwesterly bottom currents and redeposited downcurrent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0581
    Keywords: Mediterranean Ridge ; mud diapirism ; mud volcano ; fluid circulation ; accretionary prism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone. The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km. The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m−2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6–0.9 and 1.0–1.15 W m−1 K−1 respectively). We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-10-08
    Description: As the definition of contourites has widened to embrace a large spectrum of sediments in so-called mixed systems, the distinction between contourites and turbidites has become at times vague. The case history of sediment Drift 7 off the Antarctic Peninsula is analysed in this paper in the light of newly acquired swath bathymetry data. The co-existence of various sedimentary processes is reflected in a complex morphology: erosional gullies produced by debris flows on the upper part of the continental slope; deeply incised channels at the slope base; main trunk-type inter-drift turbidity channels separating the drifts; slide scars; undulating depositional bedforms interpreted as bottom-current sediment waves; fluid escape structures perhaps associated with deep-water coral bioherms. The data suggest that Drift 7 is a genuine sediment drift in which bottom currents pirate the sediment of the turbidity currents. Finally, we propose that the control on location and elongation of the drift is inherited from an older margin structure. The relationships between bottom current and deposition are investigated through a comparison with the SE Greenland continental margin, an analogous counterpart in the northern hemisphere.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract We conduct the seismic signal analysis on vintage and recently collected multichannel seismic reflection profiles from the Ionian Basin to characterize the deep basin Messinian evaporites. These evaporites were deposited in deep and marginal Mediterranean sedimentary basins as a consequence of the “salinity crisis” between 5.97 and 5.33 Ma, a basin‐wide oceanographic and ecological crisis whose origin remains poorly understood. The seismic markers of the Messinian evaporites in the deep Mediterranean basins can be divided in two end‐members, one of which is the typical “trilogy” of gypsum and clastics (Lower Unit – LU), halite (Mobile Unit – MU) and upper anhydrite and marl layers (Upper Unit – UU) traced in the Western Mediterranean Basins. The other end‐member is a single MU unit subdivided in seven sub‐units by clastic interlayers located in the Levant Basin. The causes of these different seismic expressions of the Messinian salinity crisis (MSC) appear to be related to a morphological separation between the two basins by the structural regional sill of the Sicily Channel. With the aid of velocity analyses and seismic imaging via prestack migration in time and depth domains, we define for the first time the seismic signature of the Messinian evaporites in the deep Ionian Basin, which differs from the known end‐members. In addition, we identify different evaporitic depositional settings suggesting a laterally discontinuous deposition. With the information gathered we quantify the volume of evaporitic deposits in the deep Ionian Basin as 500,000 km3 ± 10%. This figure allows us to speculate that the total volume of salts in the Mediterranean basin is larger than commonly assumed. Different depositional units in the Ionian Basin suggest that during the MSC it was separated from the Western Mediterranean by physical thresholds, from the Po Plain/Northern Adriatic Basin, and the Levant Basin, likely reflecting different hydrological and climatic conditions. Finally, the evidence of erosional surfaces and V‐shaped valleys at the top of the MSC unit, together with sharp evaporites pinch out on evaporite‐free pre‐Messinian structural highs, suggest an extreme Messinian Stage 3 base level draw down in the Ionian Basin. Such evidence should be carefully evaluated in the light of Messinian and post‐Messinian vertical crustal movements in the area. The results of this study demonstrates the importance of extracting from seismic data the Messinian paleotopography, the paleomorphology and the detailed stratal architecture in the in order to advance in the understanding of the deep basins Messinian depositional environments.
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...