ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Tree Physiology 31 (2011): 707-717, doi:10.1093/treephys/tpr066.
    Description: Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after six years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤ 1 mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m-2) lower than in the control area, while the live root standing crops in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and carbon compounds (sugar, starch, hemicellulose, cellulose, and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g-1) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated to both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass, and thus decreases carbon allocation belowground.
    Description: This study was funded by the US National Science Foundation (NSF-AGS-1005663) and the Marine Biological Laboratory (to JT), China Scholarship Council (to YZ), Harvard Forest Long Term Ecological Research (NSF-DEB-0620443) and the National Institute for Climate Change Research (DOE-DE-FCO2-06-ER64157) (to JM).
    Description: 2012-08-02
    Keywords: Carbon ; Nitrogen ; Root biomass ; Root diameter ; Root necromass
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Oecologia 168 (2012): 819-828, doi:10.1007/s00442-011-2133-7.
    Description: Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.
    Description: This work was supported by the National Institute for Climate Change Research (DOE-DE-FCO2-06-ER64157), DOE BER (DE-SC0005421) and the Harvard Forest Long-Term Ecological Research program (NSF-DEB-0620443).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-31
    Print ISSN: 1873-7617
    Electronic ISSN: 1873-7854
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-26
    Print ISSN: 1873-7617
    Electronic ISSN: 1873-7854
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...