ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 766-770 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Water-ground Phlogopite mica (Kemira Siilinjarvi phlogopite) has been evaluated as a reinforcing filler in polypropylene. The major factors which influence the composite strength and modulus include the size, aspect ratio, and uniformity of the mica flakes. Aqueous delamination permits the production of very small flakes (less than 44 microns diameter) with aspect ratios near 50. Such small flakes impart greater tensile and modulus values to polypropylene than larger flakes and the former can also be reprocessed many times without any deterioration of properties. Surface treatment is necessary for adequate dispersion and coupling, particularly with the finely divided mica fillers. Other properties such as the heat-distortion temperature, fracture toughness, and gas permeability are also influenced by the mean size and aspect ratio of the mica filler. Guidelines are presented to indicate the preferred characteristics of mica fillers for optimum performance.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 169-174 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Water-ground Phlogopite micas were classified into narrow particle-size distributions containing flakes with well-defined diameters and thicknesses in order to evaluate the influence of particle size and flake aspect ratio on the mechanical properties of mica-filled polypropylenes, For the purposes of comparison, most of the injection-molded specimens contained 40 percent (by weight) mica. As expected, the flexural and tensile modulus values increased in proportion to the aspect ratio over the range from 30 to 60 to a maximum of 8 GPa. The measured tensile strengths of the mica-filled polypropylenes increased substantially as the flake diameter became smaller, but did not correlate with the flake aspect ratio. The attainable properties were frequently dependent upon the method of mixing, and considerable care was necessary to ensure proper dispersion and adequate coupling. Intensive mixing, as in a Gelimat Mixer, may cause in situ delamination and particle-size reduction of the mica filler particles, leading to a marked increase in tensile strength of the resulting composite. The mica-filled compounds could be reprocessed many times without significant loss of properties, particularly compounds having mica particles less than 40 μm in diameter. The fracture energies (notched Izod) and the heat-distortion temperatures were not appreciably influenced by the size or aspect ratios of the mica within this range. Increased fracture toughness could be achieved by reducing the mica concentration or employing a polypropylene copolymer. Guidelines are presented to indicate the preferred characteristics of mica fillers and the influence of mixing conditions on performance.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...