ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-01
    Print ISSN: 1951-6355
    Electronic ISSN: 1951-6401
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-02-19
    Print ISSN: 0295-5075
    Electronic ISSN: 1286-4854
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-06-24
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-30
    Description: Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
    Electronic ISSN: 2198-5634
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-23
    Description: Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-08
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-24
    Description: This paper introduces the Graphics Processing Unit (GPU)-based tool Geo-Temporal eXplorer (GTX), integrating a set of highly interactive techniques for visual analytics of large geo-referenced complex networks from the climate research domain. The visual exploration of these networks faces a multitude of challenges related to the geo-reference and the size of these networks with up to several million edges and the manifold types of such networks. In this paper, solutions for the interactive visual analysis for several distinct types of large complex networks will be discussed, in particular, time-dependent, multi-scale, and multi-layered ensemble networks. Custom-tailored for climate researchers, the GTX tool supports heterogeneous tasks based on interactive, GPU-based solutions for on-the-fly large network data processing, analysis, and visualization. These solutions are illustrated for two use cases: multi-scale climatic process and climate infection risk networks. This tool helps one to reduce the complexity of the highly interrelated climate information and unveils hidden and temporal links in the climate system, not available using standard and linear tools (such as empirical orthogonal function analysis).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-12
    Description: This paper introduces the Graphics Processing Unit (GPU)-based tool Geo-Temporal eXplorer (GTX), integrating a set of highly interactive techniques for visual analytics of large geo-referenced complex networks from the climate research domain. The visual exploration of these networks faces a multitude of challenges related to the geo-reference and the size of these networks with up to several million edges and the manifold types of such networks. In this paper, solutions for the interactive visual analysis for several distinct types of large complex networks will be discussed, in particular, time-dependent, multi-scale, and multi-layered ensemble networks. Custom-tailored for climate researchers, the GTX tool supports heterogeneous tasks based on interactive, GPU-based solutions for on-the-fly large network data processing, analysis, and visualization. These solutions are illustrated for two use cases: multi-scale climatic process and climate infection risk networks. This tool helps one to reduce the complexity of the highly interrelated climate information and unveils hidden and temporal links in the climate system, not available using standard and linear tools (such as empirical orthogonal function analysis). Teleconnection analysis of climate data is an established research field analyzing network interactions in the climate system. Furthermore, the investigation over types of networks such as electricity, trading, or flight become more into focus in the context of climate related research, with respect to both climate mitigation and adaptation. These fields produce a multitude of complex, heterogeneous, geo-referenced climate related networks. Due to the size and the different properties of such networks, their investigation is not trivial. In the sense of the counterpart to sophisticated machine learning algorithms, visual analytics methods are crucial analyzing these networks visually, interactively keeping the climate researcher in the investigation loop. Existing visualization solutions can tackle the specifics of these networks only partially, in particular, they have problems with the size, geo-reference, their interlinkage, and the time-dependency of these kinds of complex networks. Filling this gap, we have developed a new visualization tool, which intensively uses the abilities of sophisticated graphic card processors to process large amounts of network data in a very fast and parallel manner. The abilities and flexibility of the proposed approach are illustrated for a classical climate teleconnection example and for a temperature-based infection disease network on flight routes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...