ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI A5-96-0611
    In: Environmental fluid mechanics
    Type of Medium: Monograph available for loan
    Pages: 299 Seiten , Illustrationen
    Edition: 1st edition 1982, reprinted 1984
    ISBN: 9027712476
    Series Statement: Environmental fluid mechanics 1
    Language: English
    Note: Table of Contents: FOREWORD. - CHAPTER 1. INTRODUCTION. - 1.1. Definitions. - 1.2. Practical Scope. - a. The Water Budget. - b. The Energy Budget. - 1.3. Global Climatology. - 1.4. The Transfer of Other Admixtures at the Earth-Atmosphere Interface. - CHAPTER 2. HISTORY OF THE THEORIES OF EVAPORATION - A CHRONOLOGICAL SKETCH. - 2.1. Greek Antiquity. - 2.2. The Roman Period and the Middle Ages. - 2.3. The Seventeenth and Eighteenth Centuries: Initial Measurements and Experimentation. - 2.4. Foundations of Present Theories in the Nineteenth Century. - CHAPTER 3. THE LOWER ATMOSPHERE. - 3.1. Moist Air. - a. Some Parameter Definitions. - b. Useful Forms of the First Law of Thermodynamics. - c. Saturation Vapor Pressure. - 3.2. Hydrostatic Stability of Partly Saturated Atmosphere. - a. Small Adiabatic Displacements. - b. Potential Temperature. - 3.3. Atmospheric Transport of Water Vapor. - a. Conservation of Water Vapor. - b. Other Conservation Equations. - c. Solution of the Transport Equations . - 3.4. The Atmospheric Boundary Layer. - CHAPTER 4. MEAN PROFILES AND SIMILARITY IN A STATIONARY AND HORIZONTALLY UNIFORM ABL. - 4.1. The Dynamic Sublayer. - a. The Logarithmic Profile. - b. The Power Law Approximation. - 4.2. The Surface Sublayer. - a. The Mean Profiles. - b. Some Flux-Profile Functions. - 4.3. Bulk Parameterization of the Whole ABL. - a. Similarity for the Mean Profiles in the Outer Sublayer. - b. Bulk Transfer Equations for the ABL. - 4.4. The Interfacial Sublayers. - a. Similarity for the Mean Profiles. - b. Interfacial Bulk Transfer Equations for Scalar Admixtures. - c. Smooth Surfaces: The Viscous Sublayer. - d. Surfaces with Bluff Roughness Elements. - e. Surfaces with Permeable Roughnesses: The Canopy Sublayer. - CHAPTER 5. THE SURFACE ROUGHNESS PARAMETERIZATION. - 5.1. The Momentum Roughness. - a. Land Surfaces. - b. Water Surfaces. - 5.2. The Scalar Roughness. - a. Calculation from Interfacial Transfer Coefficients. - b. Values Over Water. - CHAPTER 6. ENERGY FLUXES AT THE EARTH'S SURFACE. - 6.1. Net Radiation. - a. Global Short Wave Radiation. - b. Albedo. - c. Long-Wave or Terrestrial Radiation. - 6.2. Energy Absorption by Photosynthesis. - 6.3. Energy Flux at Lower Boundary of the Layer. - a. Land Surfaces. - b. Whole Water Bodies. - c. Water Surfaces. - 6.4. Remaining Terms. - a. Energy Advection. - b. Rate of Change of Energy Stored in the Layer. - CHAPTER 7. ADVECTION EFFECTS NEAR CHANGES IN SURFACE CONDITIONS. - 7.1. The Internal Boundary Layer. - a. Equations for the Mean Field. - b. Methods of Closure for Disturbed Boundary Layers: A Brief Survey. - c. Some General Features of Local Momentum Advection. Fetch Requirement. - 7.2. Evaporation with Local Advection. - a. Analytical Solutions with Power Laws. - b. Numerical Studies. - CHAPTER 8. METHODS BASED ON TURBULENCE MEASUREMENTS. - 8.1. Direct or Eddy-Correlation Method. - a. Instruments. - b. Requirements on Instrumentation. - 8.2. The Dissipation Method. - a. The Direct Variance Dissipation Method. - b. The Inertial Dissipation (or Spectral Density) Method. - CHAPTER 9. METHODS BASED ON MEASUREMENTS OF MEAN PROFILES. - 9.1. Mean Profile Method With Similarity Formulations. - a. Measurements in the Surface Sublayer. - b. Measurements in the Dynamic Sublayer. - c. Upper-Air Measurements: The ABL Profile Method. - 9.2. Bulk Transfer Approach. - a. Over a Uniform Surface. - b. Evaporation From Lakes. - 9.3. Sampling Times. - CHAPTER 10. ENERGY BUDGET AND RELATED METHODS. - 10.1. Standard Application. - a. With Bowen Ratio (EBBR). - b. With Profiles of Mean Wind and of One Scalar (EBWSP). - 10.2. Simplified Methods for Wet Surfaces. - a. Some Comments on Potential Evaporation. - b. The EBWSP Method With Measurements at One Level. - c. Advection-Free Evaporation from Wet Surfaces. - 10.3. Simplified Methods for Actual Evapotranspiration. - a. Adjustment of Penman's Approach With Bulk Stomatal Resistance. - b. Complementary Relationships between Actual and Potential Evaporation. - c. Extensions of Equilibrium Evaporation Concept. - CHAPTER 11. MASS BUDGET METHODS. - 11.1 Terrestrial Water Budget a. Soil Water Depletion and Seepage. - b. River Basins and Other Hydrological Catchments. - c. Lakes and Open-water Reservoirs. - d. Water Budget-Related Instruments; Evaporimeters. - 11.2. Atmospheric Water Budget a. Concept and Formulation b. Application of the Method . - HISTORICAL REFERENCES (PRIOR TO 1900). - REFERENCES. - INDEX.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Zeitschrift für angewandte Mathematik und Physik 33 (1982), S. 540-546 
    ISSN: 1420-9039
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Description / Table of Contents: Résumé On démontre l'existence d'une classe de solutions exactes pour le problème de désorption qui peuvent être obtenues par une méthode d'inversion. Cette méthode correspond à la méthode proposée par Philip (1960) pour sorption et rédistribution, et elle consiste de l'inversion de l'équation pour la diffusivité de Matano (1933) et de Bruce et Klute (1952). Quelques unes de ces solutions peuvent être utiles dans l'étude du mouvement de fluides en milieux poreux.
    Notes: Abstract The existence is pointed out of a class of exact solutions for desorption which can be obtained by means of a simple inversion method. This method is related to that proposed by Philip (1960) for sorption and redistribution and it consists of the inversion of the diffusivity equation of Matano (1933) and Bruce and Klute (1952). Some of the exact solutions can be useful in the study of problems encountered in flow in porous media.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 2 (1971), S. 64-82 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Interaction between sensible heat and water vapor diffusion in the lower atmosphere leads to the necessity of solving two simultaneous turbulent diffusion equations. This solution is obtained by the construction of Green's function which when incorporated in the boundary conditions produces two integral equations. These are solved by transformation into two algebraic equations by means of the Laplace Transformation. The results show how for a simple steady-state case, sensible heat and water vapor transfer and also the water surface temperature depend on the meteorological conditions and the rate of change of energy content of the water body. Due to advection, the water surface temperature and the turbulent fluxes vary in the downwind direction. However, for practical calculations of the mean evaporation or heat transfer, the error introduced by the use of an average temperature is usually quite small and negligible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Profiles of wind velocity and temperature in the outer region of the atmospheric boundary layer (ABL) were used together with surface temperature measurements, to determine regional shear stress and sensible heat flux by means of transfer parameterizations on the basis of bulk similarity. The profiles were measured by means of radiosondes and the surface temperatures by infrared radiation thermometry over hilly prairie terrain in northeastern Kansas during the First ISLSCP Field Experiment (FIFE). In the analysis, the needed similarity functions were determined and tested; the main scaling variables used for the ABL were h i , the height of the convectively mixed layer, and V a and θa, the wind speed and potential temperature averaged over the mixed layer. Good agreement (r = 0.80) was obtained between values of friction velocity u * determined by this ABL bulk similarity approach and those obtained by Monin-Obukhov similarity in the surface sublayer. Similarly, values of surface flux of sensible heat H determined by this method compared well (r = 0.90) with the regional means measured at six ground stations. The corresponding regional evaporation values, determined with the energy budget equation, also compared favorably (r = 0.94).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 34 (1986), S. 35-54 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The roughness height z 0 and the zero-plane displacement height d 0 were determined for a region of complex terrain in the Pre-Alps of Switzerland. This region is characterized by hills of the order of 100 m above the valley elevations, and by distances between ridges of the order of 1 km; it lies about 20 to 30 km north from the Alps. The experimental data were obtained from radiosonde observations under near neutral conditions. The analysis was based on the assumption of a logarithmic profile for the mean horizontal wind existing over one half of the boundary layer. The resulting (z 0/h) and (d 0/h) (where h is the mean height of the obstacles) were found to be in reasonable agreement with available relationships in terms of placement density and shape factor of the obstacles, which were obtained in previous experiments with h-scales 2 to 4 orders of magnitude smaller than the present ones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 39 (1987), S. 283-300 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The budgets of water vapor and sensible heat in the convective atmospheric boundary (mixed) layer are analyzed by means of a simple slab approach adapted to steady large-scale advective conditions with radiation and cloud activity. The entrainment flux for sensible heat is assumed to be a linear function of the surface flux. The flux of water vapor at the top of the mixed layer is parameterized by extending the first-order Betts-Deardorff approach, i.e., by adopting linear changes for both the specific humidity and the flux across the mixed layer and across the inversion layer of finite thickness. In this way the dissimilarity of sensible heat and water vapor transport in the mixed layer can be taken into account. The experimental data were obtained from the Air Mass Transformation Experiment (AMTEX). The entrainment constant for sensible heat at the top of the mixed layer was found to have values similar to those observed in other weakly convective situations, i.e., around 0.4 to 0.6. This appears to indicate that the effect of mechanical turbulence was not negligible; however, the inclusion of this effect in the formulation did not improve the correlation. In contrast to the first-order approach, the zero-order approach, i. e., the jump equation commonly used for the flux of a scalar at the inversion, (ovw′c′ ) h = we δc (where w e is the entrainment velocity and δc the concentration jump across the inversion), was found to be invalid and incapable of describing the data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 51 (1990), S. 383-400 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Potential temperature, specific humidity and wind profiles measured by radiosondes under unstable but windy conditions during FIFE in northeastern Kansas were analyzed within the framework of Monin-Obukhov similarity. Around 86% of these profiles were found to have a height range over which the similarity, formulated in terms of the Businger-Dyer functions, is valid and for which the resulting surface fluxes are in good agreement with independent measurements at ground stations. When scaled with the surface roughness z 0 = 1.05 m and the displacement height d 0 = 26.9 m, for the potential temperature this height range was 45 (±31) ⩽ (z − d 0 )/z 0 ⩽ 104 (±54) and the comparison of the profile-derived surface fluxes with the independent measurements gave a correlation coefficient of r = 0.96. For the specific humidity these values are 42 (±29) ⩽ (z − d 0 )/z 0 ⩽ 96 (±38) and r = 0.94. In terms of the height of the bottom of the inversion H i , in the morning hours the upper limit of (z − d 0 ) in the Monin-Obukhov layer is approximately 0.3H i , whereas for a fully developed ABL it is closer to 0.1H i . Probably, as a result of the short sampling times and perhaps also of the small gradients under the windy conditions, the exact height range of validity was difficult to establish from a mere inspection of these profiles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 64 (1993), S. 355-368 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Mean wind speed profiles were measured by tracking radiosondes in the unstable atmospheric boundary layer (ABL) over the forested Landes region in southwestern France. New Monin-Obukhov stability correction functions, recently proposed following an, analysis by Kader and Yaglom, as well as the Businger-Dyer stability formulation were tested, with wind speeds in the surface sublayer to calculate the regional shear stress. These profile-derived shear stresses were compared with eddy correlation measurements gathered above a mature forest stand, at a location roughly, 4.5 km from the radiosonde launch site. The shear stress values obtained by means of the newly proposed stability function were in slightly better agreement with the eddy correlation values than those obtained by means of a Businger-Dyer type stability function. The general robustness of the profile method can be attributed in part to prior knowledge of the regional surface roughness (z 0=1.2 m) and the momentum displacement height (d 0=6.0 m), which were determined from neutral wind profile analysis. The 100 m drag coefficient for the unstable conditions above this broken forest surface was found to beu * 2 /V 100 2 =0.0173.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 80 (1996), S. 355-373 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The question whether two different scalars have the same behaviour in the surface layer under stable conditions is investigated. “Similarity” of two scalars is defined in terms of the equality of their corresponding dimensionless Monin-Obukhov similarity functions. Previous theoretical and experimental results concerning the issue are briefly reviewed: they are found to be contradictory. An analytical derivation of the square of the correlation coefficient between two scalars is obtained based on the correlation structure of the turbulent dissipation functions for stable conditions, when it can be assumed that the divergence of the vertical transport of scalar variance/covariance is negligible. The resulting expression elucidates some earlier conflicting results, and helps to establish the equality of the similarity functions for all scalars in the stable surface layer. A statistical analysis in the time domain is also performed using temperature and humidity turbulence data measured in nocturnal stable conditions during FIFE-89. Our results, both from the analytical derivation and the statistical analysis of turbulence data, confirm that under validity of the Monin-Obukhov similarity theory assumptions, the corresponding similarity functions for temperature and humidity are equal to within the statistical uncertainty of the measurements. An important consequence is that the eddy diffusivities of temperature and humidity are also equal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 3 (1973), S. 394-396 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...