ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-28
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1391-1407, doi:10.1175/BAMS-D-15-00032.1.
    Description: Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 × 100 km2. In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability.
    Description: 2017-02-28
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Large scale spatial and temporal variabilities of sea surface salinity (SSS) in the Southern Ocean from 2011 to 2017 were studied using products derived from microwave sensors on board Aquarius/SAC-D, Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture Active and Passive (SMAP) satellites. Four products, three from Aquarius and one from SMOS, were evaluated and shown to be generally consistent within 0.3 to 0.6 psu and agree favorably with in situ measurements. However, although the Aquarius products show consistent seasonality of SSS with high values of 34.45 in October and low values of 33.40 in May, the SMOS and SMAP products lack such seasonal variations. This may be caused by larger uncertainties in the SMOS and SMAP data due in part to the lack of concurrent scatterometer measurements that is used to correct for roughness effects. The four products provide similar spatial distributions of SSS with root-mean-square-errors from 0.25 to 0.58 psu. Differences among Aquarius products are mainly due to varying salinity retrieval algorithms, smoothing, and masking of sea ice, while the SMOS product showed the highest SSS deviation that is likely due to the bias-adjustment done on the dataset. Our analyses show that SSS in the Southern Ocean region has significant meridional variations with the lowest SSS near the ice edge and highest at lower latitudes. The SSS is also lowest in summer indicating the predominant influence of sea ice and glacial melt, but it stays low near ice edges even during the growth season.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN63934 , American Geophysical Union (AGU) Fall Meeting 2018; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-14
    Description: SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45535 , SnowEx Workshop; Aug 08, 2017 - Aug 10, 2017; Longmont, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN14180
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km156 km and 74 km122 km (along across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN15279 , The Cryosphere; 8; 3; 905-913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between approx. 12 and 37m and amounted to 18.7 +/- 0.9 kg in the extracted core. The water filled the firn to capacity at approx. 35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 +/- 20 Gt, representing approx. 0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN13398 , Geophysical Research Letters; 41; 1; 81-85
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Global surface ocean salinity measurements have been available since the launch of SMOS in 2009 and coverage was further enhanced with the launch of Aquarius in 2011. In the polar regions where spatial and temporal changes in sea surface salinity (SSS) are deemed important, the data has not been as robustly validated because of the paucity of in situ measurements. This study presents a comparison of four SSS products in the ice-free Arctic region, three using Aquarius data and one using SMOS data. The accuracy of each product is assessed through comparative analysis with ship and other in situ measurements. Results indicate RMS errors ranging between 0.33 and 0.89 psu. Overall, the four products show generally good consistency in spatial distribution with the Atlantic side being more saline than the Pacific side. A good agreement between the ship and satellite measurements were also observed in the low salinity regions in the Arctic Ocean, where SSS in situ measurements are usually sparse, at the end of summer melt seasons. Some discrepancies including biases of about 1 psu between the products in spatial and temporal distribution are observed. These are due in part to differences in retrieval techniques, geophysical filtering, and sea ice and land masks. The monthly SSS retrievals in the Arctic from 2011 to 2015 showed variations (within approximately 1 psu) consistent with effects of sea ice seasonal cycles. This study indicates that spaceborne observations capture the seasonality and interannual variability of SSS in the Arctic with reasonably good accuracy.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN46492 , Journal of Geophysical Research: Oceans (ISSN 2169-9275) (e-ISSN 2169-9291); 122; 9; 7717-7736
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow microstructure metrics are scaled. However, the MEMLS model converges to better results when driven by the correlation length estimated from in-situ SSA measurements rather than D(sub max) measurements. On a practical level, this paper shows that the SSA parameter, a snow property that is easy to retrieve in-situ, appears to be the most relevant parameter for characterizing snow microstructure, despite the need for a scaling factor.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN41625 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 190; 247-259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN17723 , Eastern Snow Conference; Jun 03, 2014 - Jun 05, 2014; Boone, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN15169 , International Geoscience and Remote Sensing Symposium (IGRRS); Jul 13, 2014 - Jul 18, 2014; Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...