ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1978-09-01
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: A concept known as a thermo-electronic laser energy converter (TELEC), was studied as a method of converting a 10.6 micron CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma were produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: R and D Associates Proc. of the AFOSR Spec. Conf. on Prime-Power for High Energy Space Systems, Vol. 2; 11 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: The thermoelectronic laser energy converter (TELEC), was studied as a method of converting a 10.6 mm CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter to provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma was produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt. The magnitudes of these electric outputs were smaller than anticipated but consistent with the power levels of the laser during this experiment.
    Keywords: LASERS AND MASERS
    Type: NASA-CR-159729 , NSR-8-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.
    Keywords: URBAN TECHNOLOGY AND TRANSPORTATION
    Type: NASA-TM-82727 , DOE/NASA/51040-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: An experimental thermoelectronic laser energy converter (TELEC) was constructed and tested with a 40 kW combustion laser operating at a wave length of 10.6 microns. The objective of the test was to demonstrate the feasibility of the TELEC concept for converting a laser beam into electric power. The TELEC System is intended as the receiver for a laser power transmission system in space.
    Keywords: COMMUNICATIONS AND RADAR
    Type: NASA-CR-152077
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
    Keywords: MECHANICAL ENGINEERING
    Type: IECEC ''82; Seventeenth Intersociety Energy Conversion Engineering Conference; Aug 08, 1982 - Aug 12, 1982; Los Angeles, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Over a decade of cesium vapor thermionic converter research has yielded sufficient understanding of the basic plasma processes to permit application of this understanding to improvement of converter performance. A performance index is defined which relates such converter improvements directly to increases in system performance. A prime practical objective of current research is to reduce or eliminate the arc potential drop presently required to sustain the plasma in the ignited cesium diode. This will substantially increase the energy conversion efficiency, and will permit operation at substantially lower emitter temperatures without requiring lower collector (heat rejection) temperature. Present work is concentrating on evaluating and reducing to practice the several methods employing auxiliary ion sources to eliminate the arc drop which were demonstrated over a decade ago: i.e., various ignited and unignited triode concepts, and the pulse-enhanced diode and triode. These methods are reviewed in light of present understanding and recent experimental data.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Energy 10; Annual Intersociety Energy Conversion and Engineering Conference; Aug 18, 1975 - Aug 22, 1975; Newark, DE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Energy 10; Annual Intersociety Energy Conversion and Engineering Conference; Aug 18, 1975 - Aug 22, 1975; Newark, DE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasma-dynamic (MPD) accelerator is described and the results of preliminary analyses are presented. In this system, the thermionic generating unit operates continuously at a power level of approximately 0.4 MW, while the MPD thruster operates intermittently at higher voltages and power levels. Energy storage is provided by building up a large current in an inductor. Periodically, the charging current is interrupted and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. A typical thrust pulse is characterized by a power level of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. Results of the preliminary analysis show that approximately 85 to 90% of the power available from the thermionic converter array can be delivered to the MPD thruster for a nominal 400 kWe system with an inductive unit suitable for a flight vehicle. Optimized values of the total specific mass of the system including the thermionic reactor, the inductor, and the MPD thruster are estimated in the range of 23 to 24 kg/kWe.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Conference on Intersociety Energy Conversion Engineering; Sep 12, 1976 - Sep 17, 1976; State Line, NV
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...