ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 239-241 (Nov. 1996), p. 61-64 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 243-245 (Nov. 1996), p. 363-368 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Available deformation data for superplastic yttria-stabilized zirconia polycrystals with grain size 〈1 µm have been analyzed at temperatures between 1250° and 1450°C as a function of stress, grain size, and impurity content. The apparent stress exponent nfor the higher-purity materials (residual impurity content 〈0.10 wt%) varies from 2 (region II) to greaterthan equal to3 (region I), and then toward 1 when the stress is decreased. The stress for transition between region II and region I decreases when the temperature and/or grain size is increased. The activation energy Qfor flow in region II is 460 kJ/mol, which is approximately that for cation lattice diffusion. The grain-size exponent pdecreases continuously and Qincreases continuously with decreasing stress in region I. The constitutive equation for superplastic flow in region II is identical to that for metallic systems when lattice diffusion is the rate-controlling mechanism. The experimental results have been correlated with a single deformation process that incorporates a threshold stress, below which grain-boundary sliding does not contribute to strain. The threshold stress may result from yttrium segregation at grain boundaries and its interaction with grain-boundary dislocations. A single deformation regime with n= 2 exists for low-purity materials (impurity content 〉0.10 wt%) over the entire stress range. The strain-rate enhancement with respect to high-purity materials is related to the grain-boundary amorphous phase present in such materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Proteoid root clusters are induced by P deficiency in white lupin. In their mature stage, these roots excrete organic acids (mainly citrate), thus allowing this species to acquire P from sparingly soluble sources. To screen for P-regulated genes expressed during the period of citrate efflux, an experimental model based on proteoid root clusters contrasting in citrate efflux was developed. The feasibility of this model in identifying differential gene expression was assessed over a population of mRNAs from P-starved and P-starved rescued proteoid root clusters, sampled 24 and 72 h after P addition to 24 days P-starved white lupin. Approximately 1500 bands of cDNA were displayed by differential display of 21-primer pair's combination; 52 differentially expressed bands, either up- or down-regulated after P addition, were observed. Sequence analysis of 17 of them revealed that they represent distinct cDNAs. A subsample of seven cDNAs was analysed by northern-blot, showing that six were truly differential products. Transcripts coding for enzymes involved in carbon flux (glyceraldehyde 3-phosphate dehydrogenase), glycolytic bypass (phosphoenolpyruvate carboxylase), Pi recycling (sulpholipid synthase), and two unknown cDNAs were shown to be down-regulated by P supply. Besides, an up-regulated transcript coding for a putative auxin-induced protein was identified, whereas P addition did not significantly affect expression of a transcript for cyclophilins. These results show the feasibility of using P-starved and P-starved rescued proteoid root clusters as an experimental model to detect and examine the molecular changes occurring in root clusters during the period of citrate efflux in white lupin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 106 (1999), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Barley (Hordeum vulgare L.) exposed to low temperature increases its freezing tolerance. This increase has been associated with several metabolic changes caused by low temperature, including expression of dehydrins (DHN), a family of proteins induced by dehydration and cold acclimation. DHNs play an undetermined role in dehydration responses during freezing. We have studied the accumulation of an 80-kDa DHN-like protein (P-80) in barley under cold acclimation 6/4°C (day/night), postulating that it is localized in tissues where primary ice nucleation occurs. P-80 was absent in nonacclimated plants and was detectable after 48 h of cold acclimation, reaching a stable level after 6 days. P-80 decreased when plants were returned to 20–25°C. Drought, ABA and high temperature did not increase the levels of P-80, suggesting that its expression could be specifically regulated by cold. Immunolocalization by tissue printing and fresh cross sections of leaves showed the protein to be associated with vascular tissues and epidermis. The localization of P-80 is consistent with our hypothesis because vascular tissue and the epidermis are preferential ice nucleation zones during the onset of freezing. The differential accumulation of P-80 may have an adaptive value by participating in tolerance mechanisms during freeze-induced dehydration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Dehydrins are a family of proteins associated with cell dehydration. Drought, salinity, and high and low temperature may cause water loss from cells. Cold-induced dehydrins have been reported in several species. P-80 is a cold-induced 80 kDa dehydrin in barley. This protein has the same apparent molecular mass as Dhn5, previously described for barley cv Himalaya. P-80 was localized in the vicinity of vascular cylinders and in the epidermis of leaves and stems. Both tissues have been reported to be sites of early ice nucleation during controlled freezing. The present authors have proposed that this protein cryoprotects macromolecules and frost-sensitive structures. In the present study, P-80 and Dhn5 were purified with the purposes of demonstrating their cryoprotective activity in vitro, and comparing both proteins. More than 95% purity was obtained combining heat treatment, cationic exchange chromatography, preparative denaturant electrophoresis and band electroelution. Western blots showed that P-80 was the major cold-induced dehydrin in the cultivars examined in the present study. There was a major band of mRNA that showed expression kinetics consistent with P-80 accumulation. The RT-PCR picked one major band when using Dhn5-specific primers in four cold-acclimated barley cultivars. Both proteins have a similar amino acid composition, with differences in Arg, Asn + Asp, Glu + Gln, His, and Lys. The analysis of proteolytic fragments of Dhn5 and P-80 by reverse phase chromatography showed a similar pattern. Furthermore, both proteins were able to cryoprotect lactate dehydrogenase (LDH, EC 1.1.1.27) against freeze/thaw inactivation, showing a similar shape dependence on concentration and almost the same protein dosage that renders 50% of cryoprotection (PD50). Thus, P-80 and Dhn-5 share more similarities than expected for two different proteins. Their identities, though, remain to be firmly established. Further research is necessary to establish if the observed in vitro cryoprotective activity of these dehydrins is important for cryoprotection in vivo. The association of cryoprotective activity with K repeats of dehydrins is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Physiologia plantarum 115 (2002), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Most of the ice and snow-free land in the Antarctic summer is found along the Antarctic Peninsula and adjacent islands and coastal areas of the continent. This is the area where most of the Antarctic vegetation is found. Mean air temperature tends to be above zero during the summer in parts of the Maritime Antarctic. The most commonly found photosynthetic organisms in the Maritime Antarctic and continental edge are lichens (around 380 species) and bryophytes (130 species). Only two vascular plants, Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl., have been able to colonize some of the coastal areas. This low species diversity, compared with the Arctic, may be due to permanent low temperature and isolation from continental sources of propagules. The existence of these plants in such a permanent harsh environment makes them of particular interest for the study of adaptations to cold environments and mechanisms of cold resistance in plants. Among these adaptations are high freezing resistance, high resistance to light stress and high photosynthetic capacity at low temperature. In this paper, the ecophysiology of the two vascular plants is reviewed, including habitat characteristics, photosynthetic properties, cold resistance, and biochemical adaptations to cold.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 103 (1998), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The role of ABA in freezing resistance in nonacclimated and cold-acclimated barley (Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold-acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 111 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) are the only two vascular plants that have colonized the Maritime Antarctic. The primary purpose of the present work was to determine cold resistance mechanisms in these two Antarctic plants. This was achieved by comparing thermal properties of leaves and the lethal freezing temperature to 50% of the tissue (LT50). The grass D. antarctica was able to tolerate freezing to a lower temperature than C. quitensis. The main freezing resistance mechanism for C. quitensis is supercooling. Thus, the grass is mainly a freezing-tolerant species, while C. quitensis avoids freezing. D. antarctica cold acclimated; thus, reducing its LT50. C. quitensis showed little cold-acclimation capacity. Because day length is highly variable in the Antarctic, the effect of day length on freezing tolerance, growth, various soluble carbohydrates, starch, and proline contents in leaves of D. antarctica growing in the laboratory under cold-acclimation conditions was studied. During the cold-acclimation treatment, the LT50 was lowered more effectively under long day (21/3 h light/dark) and medium day (16/8) light periods than under a short day period (8/16). The longer the day length treatment, the faster the growth rate for both acclimated and non-acclimated plants. Similarly, the longer the day treatment during cold acclimation, the higher the sucrose content (up to 7-fold with respect to non-acclimated control values). Oligo and polyfructans accumulated significantly during cold acclimation only with the medium day length treatment. Oligofructans accounted for more than 80% of total fructans. The degrees of polymerization were mostly between 3 and 10. C. quitensis under cold acclimation accumulated a similar amount of sucrose than D. antarctica, but no fructans were detected. The suggestion that survival of Antarctic plants in the Antarctic could be at least partially explained by accumulation of these substances is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 447-448 (Feb. 2004), p. 347-352 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...