ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 29 (1982), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The aragonitic molluscs and lime-mud of the Pennsylvanian Buckhorn asphalt (Deese Group) of southern Oklahoma precipitated calcium carbonate in oxygen and carbon isotopic equilibrium with ambient sea-water. In addition, δ18O values indicate that the pelecypods precipitated their shells during the warmer months of the year. The coiled nautiloids probably precipitated their shells in the warm surface water and throughout the year. For the orthocone nautiloids, the δ18O values suggest that they precipitated their shells in deeper/cooler water.The low-Mg calcite brachiopods of the Mississippian Lake Valley Formation of New Mexico precipitated shells in oxygen and carbon isotopic equilibrium with ambient sea-water.The δ18O and δ13C values of the Buckhorn and Lake Valley faunas, in conjunction with other published results, suggest that Carboniferous sea-water was, on a average, depleted in δ18O by 1·5 ± 2‰, PDB, relative to Recent sea-water. However, the δ13C value of +2.6 ± 2‰, PDB, for average Carboniferous sea-water is similar to that of Recent ocean water.Early diagenetic alteration of metastable carbonates probably occurs in a meteoric-sea-water mixing zone. In this zone the oxygen and carbon isotopic compositions of these components are increased by about 2-4‰, PDB over their marine composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: Fossil carbonate skeletons of marine organisms are archives for understanding the development and evolution of palaeo-environments. However, the correct assessment of past environment dynamics is only possible when pristine skeletons and their biogenic characteristics are unequivocally distinguishable from diagenetically-alteredskeletal elements and non-biogenic features. In this study, we extend our work on diagenesis of biogenic aragonite (Casella et al. 2017) to the investigation of biogenic low-Mg calcite using brachiopod shells. We examined and compared microstructural characteristics inducedby laboratory-based alteration to structural features derived from diagenetic alteration in natural environments. We used four screening methods: cathodoluminescence (CL), cryogenic and conventional field emission-scanning electronmicroscopy (FE-SEM), atomic force microscopy (AFM) and electron backscatter diffraction (EBSD).We base our assessments of diagenetic alteration and overprint on measurements of, a) images of optical overprint signals, b) changes in calcite crystal orientation patterns, and c) crystal co-orientation statistics. According to the screening process, altered and overprinted samples define two groups. In Group 1 the entire shell is diagenetically overprinted, whereas in Group 2 the shell contains pristine as well as overprinted parts. In the case of Group 2 shells, alteration occurred either along the periphery of the shell including the primary layer or at the interior-facing surface of the fibrous/columnar layer. In addition, we observed an important mode of the overprinting process, namely the migration of diagenetic fluids through the endopunctae corroborated by mineral formation and overprinting in their immediate vicinity, while leaving shell parts between endopunctae in pristine condition. Luminescence (CL) and microstructural imaging (FE-SEM) screening give first-order observations of the degree of overprint as they cover macro-to micron scale alteration features. For a comprehensive assessment of diagenetic overprint these screening methods should be complemented by screening techniques such as EBSD and AFM. They visualise diagenetic changes at submicron and nanoscale levels depicting the replacement of pristine nanocomposite mesocrystal biocarbonate (NMB) by inorganic rhombohedral calcite (IRC). The integration of screening methods allows for the unequivocal identification of highly-detailed alteration features as well as an assessment of the degree of diagenetic alteration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: Recent and fossil brachiopod shells have a long record as biomineral archives for (palaeo)climatic and (palaeo)environmental reconstructions, as they lack or exhibit limited vital effects in their calcite shell and generally are quite resistant to diagenetic alteration. Despite this, only few studies address the issue of identifying the best or optimal part of the shell for geochemical analyses. We investigated the link between ontogeny and geochemical signatures recorded in different parts of the shell. To reach this aim, we analysed the elemental (Ca, Mg, Sr, Na) and stable isotope (δ18O, δ13C) compositions of five recent brachiopod species (Magellania venosa, Liothyrella uva, Aerothyris kerguelensis, Liothyrella neozelanica and Gryphus vitreus), spanning broad geographical and environmental ranges (Chile, Antarctica, Indian Ocean, New Zealand and Italy) and having different shell layer successions (two-layer and three-layer shells). We observed similar patterns in the ventral and dorsal valves of these two groups, but different ontogenetic trends by the two- and three-layer shells in their trace element and stable isotope records. Our investigation led us to conclude that the optimal region to sample for geochemical and isotope analyses is the middle part of the mid-section of the shell, avoiding the primary layer, posterior and anterior parts as well as the outermost part of the secondary layer in recent brachiopods. Also, the outermost and innermost rims of shells should be avoided due to diagenetic impacts on fossil brachiopods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Atmospheric carbon dioxide concentrations seem to have been several times modern levels during much of the Palaeozoic era (543–248 million years ago), but decreased during the Carboniferous period to concentrations similar to that of today. Given that carbon dioxide is a ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0947-3440
    Keywords: Bridges, parallel o-phenylene and azo ; Dyotropic hydrogen transfer ; 1,5-Laticyclic conjugation ; [6 + 2] Photocycloaddition ; Photoelectron spectra ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Examples were synthesized of the four systems 1, 3, 5, and 7, in which rigid parallelo o-phenylene and azo bridges are connected to five- and/or six-membered carbocyclic moities. The o-phenylene bridge was introduced by two routes: (A) starting from precursors already containing that bridge (24, 29) and assembling the azo bridge in consecutive steps (→ 3a, 3b, 5c, 5d, 5e, 5f, 5g); (B) starting from the systems with parallel C=C/N=N bridges (9a, 11a, 13a, 42) and completing the dihydro-o-phenylene ring by tetrachlorothiopene dioxide. Dyotropic hydrogen transfer of the azo bridge enhances the dehydrogenation of the intermediate dihydro-o-phenylene derivatives (22, 3cH2, 25). This mechanism was proved by the domino hydrogen transfer 44 → 45 → 5h. Via route B, systems 1a, 1b, 3c, 3d, 5a, 5b, 5h, and 43 were obtained. In sharp contrast to the smooth [2 + 2] photocycloaddition of systems 9, 11, 13, and 15 (C=C/N=N bridges), [6 + 2] photocycloaddition occurs only with systems 1 and (5C/5N) and 3 (6C/5N) but not with systems 5 (5C/6N) and 7 (6C/6N). These differences are not caused by slightly varying distances of the two bridges (X-ray data) but by the higher n_ ionization energy of the azo group incorporated into a 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH) instead of a 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) moiety, the hypsochromicity of the corresponding DBH n-π* state and the higher ground-state energy of DBH compared to DBO.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-12
    Description: The Permian-Triassic mass extinction represents the most severe environmental crisis in Earth’s history, which dictated the course for evolution of life until today. Volcanism from Siberian traps played a significant role involving a substantial input of relatively light carbon into the atmosphere leading to a combination of global warming by ~6°C, sporadic anoxia or euxinia, and ocean acidification. However, its detailed manifestation and environmental impact is yet to be fully understood. This lack of knowledge also extends to a better quantification of emitted and sequestered carbon budgets (cf. Gutjahr et al., 2017).
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions. Twenty-one adult specimens of six recent brachiopod species adapted to different environmental conditions, from Antarctica, to New Zealand, to the Mediterranean Sea, were chosen for microstructural analysis using SEM, TEM and EBSD. We conclude that: 1) there is no significant difference in the shape and size of the fibres between ventral and dorsal valves, 2) there is an ontogenetic trend in the shape and size of the fibres, as they become larger, wider, and flatter with increasing age. This indicates that the fibrous layer produced in the later stages of growth, which is recommended by the literature to be the best material for geochemical analyses, has a different morphostructure and probably a lower organic content than that produced earlier in life. In two species of the same genus living in seawater with different temperature and carbonate saturation state, a relationship emerged between the microstructure and environmental conditions. Fibres of the polar Liothyrella uva tend to be smaller, rounder and less convex than those of the temperate Liothyrella neozelanica, suggesting a relationship between microstructural size, shell organic matter content, ambient seawater temperature and calcite saturation state.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract Three ooid types are recognized from the Lower Tournaisian »Kohlenkalk« shelf facies at Velbert, Germany. Ooids from this unit have a predominantly concentric laminae fabric. Radial-concentric and small radial fibrous ooids are minor components to this oolite. The diagenetic response of Kohlenkalk ooid chemistry is significantly different from that observed in contemporaneous crinoid and brachiopod material. Fabric evidence suggests that radial-concentric and radial-fibrous ooids were probably originally aragonite/high-Mg calcite and high-Mg calcite respectively. Fabric and trace elemental chemistries of the concentric fabric ooids suggests that they were originally precipitated as aragonite and subsequently altered to low-Mg calcite. Recent papers have proposed temporal shifts in the dominant mineralogy of shallow marine non-skeletal carbonates between calcite and aragonite. Changing Phanerozoic atmospheric pCO2 levels and oceanic Mg/Ca ratios may have been factors controlling the dominant mineralogy. The chemistries of the Kohlenkalk ooids in conjunction with other ooid and micrite data spanning the Mid-Paleozoic to Recent are evaluated in context with these temporal shifts between »calcite« and »aragonite seas«. The strontium chemistries of the ooids (¯x = 1010 ppm, range 145–3010 ppm) and micrites (¯x = 841 ppm, range 3–8800 ppm) suggests they had an aragonite precursor mineralogy. No statistical correlation was observed between ooid/micrite chemistries, their mineralogies and the proposed secular trend. Therefore, we suggest that aragonitic ooids and micrites were dominant components of shallow-marine carbonate environments throughout the Phanerozoic. The distribution and abundance of aragonitic and calcitic ooids in the geologic past was probably dependant on local hydraulic, physicochemical, and environmental conditions, areally constrained by global tectonics, eustatic, climatic and atmospheric effects, with significant diagenetic overprinting of the original geochemical and fabric information.
    Abstract: Résumé Parmi les facies de plate-forme du Tournaisien inférieur, dans le calcaire carbonifère de Velbert (RFA), on distingue trois types d'ooïdes: les plus abondantes présentent une structure lamellaire concentrique; d'autres, en quantité subordonnée, sont radiaires-concentriques et fibro-radiées. En réponse à leur chimisme, les ooïdes du calcaire carbonifère ont connu une évolution diagénétique nettement différente de celle des sédiments à crinoïdes et à brachiopodes de même âge. L'organisation structurale des ooides radiaires-concentriques et fibro-radiées indique que'elles étaient constituées respectivement d'aragonite + calcite magnésienne et de calcite magnésienne. Par contre, la structure et le chimisme des éléments en traces des ooïdes concentriques suggèrent qu'elles ont été d'abord précipitées en aragonite et transformées ensuite en calcite pauvre en Mg. Selon certains travaux récents, la composition minéralogique des sédiments carbonatés non organo-détritiques aurait fluctué au cours du temps entre l'aragonite et la calcite. Des factures déterminants de ce processus auraient pû être les changements, au cours du Phanérozoïque, de pCO2 dans l'atmosphère et du rapport Mg/Ca dans les océans. Le chimisme des ooïdes du calcaire carbonifère, comparé à celui de micrites et d'autres ooïdes d'âges phanérozoïque moyen à récent est examiné en relation avec ces passages de «mers à calcite» à «mer à aragonite» au cours du temps. Le chimisme du Sr des ooïdes (x = 1010 ppm; intervalle 145–3010 ppm) et des micrites (x = 841 ppm; intervalle 3–8800 ppm) suggère une précipitation primaire d'aragonite. Il n'apparaît aucune corrélation statistique entre le chimisme des ooïdes et micrites, leur minéralogie, et les fluctuations temporelles suggérées. Pour ces raisons, nous pensons que les ooïdes et micrites aragonitiques ont été les composants dominants des milieux carbonatés peu profonds pendant tout le Phanérozoïque. L'abondance et la répartition des ooïdes aragonitiques et calcitiques dans la nature ancienne ont vraisemblablement résulté de conditions locales hydrauliques, physico-chimiques et d'environnement, déterminées par la tectonique globale, et par les changements eustatiques, climatiques ou atmosphériques, qui ont surimposé leur empreinte diagénetique aux caractères structuraux et géochimiques primaires.
    Notes: Zusammenfassung In der Kohlenkalk-Schelffazies des Untertournais bei Velbert (Bundesrepublik Deutschland) lassen sich drei Ooidtypen unterscheiden. Gemeinsam ist diesen Ooiden ein vorwiegend konzentrischer Lagenbau. Dagegen ist das Vorkommen radial-konzentrischer und radial-fibröser Ooide minimal. Die diagenetische Entwicklung der Kohlenkalkooide ist hinsichtlich ihrer chemischen Zusammensetzung deutlich von gleichalten Crinoiden- oder Brachiopodenmaterial zu unterscheiden. Strukturelle Beobachtungen lassen darauf schließen, daß radial-konzentrische und radial-fibröse Ooide ursprünglich aus Aragonit/Hoch-Mg-Calcit bzw. Hoch-Mg-Calcit bestanden. Die Zusammensetzung der Spurenelemente und die Struktur der konzentrisch aufgebauten Ooide hingegen deutet auf eine Fällung von Aragonit, der im Laufe der Diagenese zu Niedrig-Mg-Calcit umgewandelt wurde. In letzter Zeit wurde in einigen Veröffentlichungen die These vertreten, daß die Mineralogie von nicht-skelett Karbonaten zwischen Calcit und Aragonit in unbekannten Intervallen wechselt. Wechsel des atmosphärischen CO2 Drucks und des Mg/Ca Verhältnisses in den Ozeanen während des Phanerozoikums könnten Vorgänge sein, die die vorherrschende Mineralogie dieser Karbonate beeinflussen. In dieser Arbeit wird der Chemismus der Kohlenkalkooide in Verbindung mit anderen Ooiden und Daten über Mikrite des Mittelpaläozoikums bis heute in bezug auf den Wechsel zwischen »Calcit«- und »Aragonit-Ozeanen« diskutiert. Der Strontiumgehalt der Ooide (¯x = 1010 ppm, Spannbreite: 145–3010 ppm) und der Mikrite (¯x = 841 ppm, Spannbreite: 3–8800 ppm) spricht für eine primäre Aragonitfällung. Zwischen der Ooid/Mikrit Chemie und ihrer Mineralogie gab es keine mögliche statistische Korrelation. Daraus schließen wir, daß während des ganzen Phanerozoikums aragonitische Ooide und mikrite große Bedeutung in flachmarinen Schelfregionen mit Karbonatsedimentation hatten und haben. Das Vorkommen aragonitischer und calcitischer Ooide ist wahrscheinlich an hydraulische und physiko-chemische Vorgänge gebunden, die auf globale Tektonik, eustatische-, klimatische- und atmosphärische Veränderungen zurückzuführen sind. Diese führten dazu, daß die ursprüngliche Geochemie und Struktur diagenetisch verändert wurde.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9729
    Keywords: Brachiopod biogeochemistry ; diagenesis ; secular isotopic variations ; carbon isotopes ; oxygen isotopes ; Sr/Ca ; temperature ; Recent ; Late Paleozoic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sr/Ca ratios in modern brachiopod shells reflect variations in ambient seawater, whereas their Na contents show no relationship with water depth or habitat. Their Mn and Fe contents are controlled, in part, by leaching of these elements from oxide coatings or the low input/sedimentation rate of detrital material into depositional areas such as Quatsino Sound. For most Carboniferous brachiopods from North America, the Mn and Fe contents are similar to those recorded by their Recent counterparts. The high Mn and Fe contents in the brachiopods from shales suggest several possibilities for these levels. One possibility is the leaching of Mn and Fe from oxide coatings/matrix which was not completely removed in the cleaning process, or the high levels in part reflect unusual depositional conditions (some degree of anoxia) for the local shaly environments. The Sr/Ca ratio of brachiopods and, by inference, complementary seawater, did not vary significantly during the Carboniferous. The Sr/Ca minimum observed in brachiopods of Mississippian age coincides with a dip in the 87Sr/86Sr curve and correlates with the Hercynian orogeny. This is attributed to the cycling of seawater through mid-ocean ridge basalts, and postulated exchange reactions account for variation in the composition of seawater-Ca. The unidirectional trend of heavier δ13C values from the Devonian to the Permian is intricately coupled with the evolution of the terrestrial biomass. In addition to expansion of terrestrial plants, burial of reduced carbon in the form of coal (organic matter) contributed to the observed shift. The start of the Permo-Pennsylvanian glaciation is marked by a negative excursion of the secular carbon trend, which is linked to weathering of reduced carbon and its return to the oceanic reservoir with its oxidized carbon. The oxygen isotope values reflect the unidirectional trend towards higher values of the carbon data with decreasing geologic age. Negative excursions of the trend may be related to extensive weathering of terrestrial and submarine rocks, whereas positive excursions may be related to hydrothermal alteration of submarine rocks and dehydration of oceanic crust during times of active sea-floor spreading. Oxygen-calculated water temperatures of unaltered brachiopod material are unrealistically high for all of the Devonian, and the Chesterian-Meramecian, Desmoinesian-Missourian, and Artinskian Epochs. During these times maximum water temperatures of 42° to 56°C are well above the thermal threshold of protein denaturation. This process, which is lethal to most higher organisms, demands an adjustment in oxygen of -2.5%. for samples older than Missourian, and of -1.250%. for samples spanning the Missourian-Artinskian interval. With these adjustments and salinity considerations made prior to calculations, water temperatures become reasonable for the Late Paleozoic epeiric, tropical seas of North America.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...