ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.
    Keywords: Communications and Radar
    Type: GSFC-E-DAA-TN32557 , Specialist Meeting on Micorwave Radiometry and Remote Sensing of the Enviroment (MicroRad 2016); Apr 11, 2016 - Apr 14, 2016; Espoo; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Radio Frequency Interference (RFI) is a persistent and growing problem experienced by spaceborne microwave radiometers. Recent missions such as SMOS, SMAP, and GPM have detected RFI in L, C, X, and K bands. To proactively deal with this issue, microwave radiometers must (1) Utilize new algorithms for RFI detection (2) Utilize fast digital back-ends that sample at hundreds of MHz. The wideband digital signal processing testbed (WB-RFI) is a platform that allows rapid development and testing various RFI detection and mitigation algorithms.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN25213 , IEEE Geoscience and Remote Sensing Society (IGARSS 2015); Jul 26, 2015 - Jul 31, 2015; Milan; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Radio Frequency Interference (RFI) is a persistent and growing problem experienced by spaceborne microwave radiometers. Recent missions such as SMOS, SMAP, and GPM has detected RFI in L, C, X, and K bands. To proactively deal with this issue, microwave radiometers must (1) Utilize new algorithms for RFI detection (2) Utilize fast digital back-ends that sample at hundreds of MHz. The wideband digital signal processing testbed (WB-RFI) is a platform that allows rapid deelopment and testing various RFI detection and mitigation algorithms.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN25169 , IEEE Geoscience and Remote Sensing Society (IGARSS 2015); Jul 26, 2015 - Jul 31, 2015; Milan; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN57064 , IEEE International Geoscience and Remote Sensing Symposium; Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN32497 , 2016 Earth Science Technology Forum (ESTF2016); Jun 14, 2016 - Jun 16, 2016; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN38347 , GSFC-E-DAA-TN37256 , National Radio Astronomy Observatory (NRAO): Coexisting with Radio Frequency Interference; Oct 17, 2016 - Oct 20, 2016; Sorrocco, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance.
    Keywords: Communications and Radar
    Type: GSFC-E-DAA-TN30804 , Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2016); Apr 11, 2016 - Apr 14, 2016; Espoo; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...