ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Joint Propulsion; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: For propulsion applications that require that the propellants are storable for long periods, have a high density impulse, and are environmentally clean and non-toxic, the best choice is a combination of high-concentration hydrogen peroxide (High Test Peroxide, or HTP) and a liquid hydrocarbon (LHC) fuel. The HTP/LHC combination is suitable for low-cost launch vehicles, space taxi and space maneuvering vehicles, and kick stages. Orbital Sciences Corporation is under contract with the NASA Marshall Space Flight Center in cooperation with the Air Force Research Lab to design, develop and demonstrate a new low-cost liquid upper stage based on HTP and JP-8. The Upper Stage Flight Experiment (USFE) focuses on key technologies necessary to demonstrate the operation of an inherently simple propulsion system with an innovative, state-of-the-art structure. Two key low-cost vehicle elements will be demonstrated - a 10,000 lbf thrust engine and an integrated composite tank structure. The suborbital flight test of the USFE is scheduled for 2001. Preceding the flight tests are two major series of ground tests at NASA Stennis Space Center and a subscale tank development program to identify compatible composite materials and to verify their compatibility over long periods of time. The ground tests include a thrust chamber development test series and an integrated stage test. This paper summarizes the results from the first phase of the thrust chamber development tests and the results to date from the tank material compatibility tests. Engine and tank configurations that meet the goals of the program are described.
    Keywords: Spacecraft Propulsion and Power
    Type: Hydrogen Peroxide Propulsion; Nov 07, 1999 - Nov 10, 1999; West Lafayette, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...