ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Monograph available for loan
    Monograph available for loan
    Chicester : Wiley-Blackwell
    Call number: 18/M 15.0287
    Description / Table of Contents: Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization.In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.
    Type of Medium: Monograph available for loan
    Pages: XXIX, 326 S. : Ill., graph. Darst.
    ISBN: 9781118961742
    Classification:
    Informatics
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-25
    Description: Lake Fryxell, McMurdo Dry Valleys, Antarctica contains a constantly cold water column and perennial ice-cover. Although carbon and sulfur cycling in this amictic lake have been studied previously, a paired investigation of 16S rRNA gene based microbial diversity and geochemistry of Lake Fryxell is lacking. Here, we used a combination of radiotracer-based rate measurements, geochemical measurements, and molecular microbial community analysis to investigate the anaerobic oxidation of methane (AOM) and associated processes in Lake Fryxell. The results show that while AOM and sulfate reduction appear coupled in the upper regions of the anoxic water column, in deep anoxic waters, where AOM rates are highest, sulfate is unlikely to be the electron acceptor for AOM. Despite significant rates of AOM in these waters, no putative AOM-associated Archaea or Bacteria were observed. Due to a lack of documented AOM electron acceptors and putative ANMEs, we suggest novel modes of AOM dominate in this extreme environment. First, the notable abundance of the bacterial genus Dehalococcoides suggests that reductive dehalogenation could fuel AOM. Further, taxa of the candidate phylum OP9, the Atribacteria, and the Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group) both commonly observed at cold methane-seeps globally, may mediate AOM, possibly using humic acids as electron shuttles, in Lake Fryxell.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-14
    Description: Using simulated data, we investigated the effect of noise in a spaceborne hyperspectral sensor on the accuracy of the atmospheric correction of at-sensor radiances and the consequent uncertainties in retrieved water quality parameters. Specifically, we investigated the improvement expected as the F-number of the sensor is changed from 3.5, which is the smallest among existing operational spaceborne hyperspectral sensors, to 1.0, which is foreseeable in the near future. With the change in F-number, the uncertainties in the atmospherically corrected reflectance decreased by more than 90% across the visible-near-infrared spectrum, the number of pixels with negative reflectance (caused by over-correction) decreased to almost one-third, and the uncertainties in the retrieved water quality parameters decreased by more than 50% and up to 92%. The analysis was based on the sensor model of the Hyperspectral Imager for the Coastal Ocean (HICO) but using a 30-m spatial resolution instead of HICO’s 96 m. Atmospheric correction was performed using Tafkaa. Water quality parameters were retrieved using a numerical method and a semi-analytical algorithm. The results emphasize the effect of sensor noise on water quality parameter retrieval and the need for sensors with high Signal-to-Noise Ratio for quantitative remote sensing of optically complex waters.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...