ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 32 (1993), S. 9256-9261 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 8 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: CheA is a dimeric autophosphorylating protein kinase that plays a critical role in the signal transduction network controlling chemotaxis In Escherichia coli. The autophosphorylation reaction was analysed using mutant proteins defective in kinase and regulatory functions. Proteins in which the site of autophosphorylation was mutated (CheA48HQ) or missing (CheAs) were found to phosphorylate the kinase-defective mutant, CheA470GK. The kinetics of this reaction support the hypothesis that autophosphorylation is the result of trans-phosphorylation within a dimer. The carboxy-terminal portion of CheA was previously shown to be dispensable for autophosphorylation, but required for regulation in response to environmental signals transmitted through a transducer and CheW. Mixing of CheA48HQ or CheA470GK with a truncated protein lacking this regulatory domain demonstrated that regulated autophosphoryltion requires the presence of both carboxy-terminal portions in a CheA dimer. These results indicate that the dimeric form of CheA plays an integral role in signal transduction in bacterial chemotaxis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: CheY, a response regulator protein in bacterial chemotaxis, mediates swimming behaviour through interaction with the flagellar switch protein, FliM. In its active, phosphorylated state, CheY binds to the motor switch complex and induces a change from counterclockwise (CCW) to clockwise (CW) flagellar rotation. The conformation of a conserved aromatic residue, tyrosine 106, has been proposed to play an important role in this signalling process. Here, we show that an isoleucine to valine substitution in CheY at position 95 — in close proximity to residue 106 — results in an extremely CW, hyperactive phenotype that is dependent on phosphorylation. Further biochemical characterization of this mutant protein revealed phosphorylation and dephosphorylation rates that were indistinguishable from those of wild-type CheY. CheY95IV, however, exhibited an increased binding affinity to FliM. Taken together, these results show for the first time a correlation between enhanced switch binding and constitutive signalling in bacterial chemotaxis. Considering present structural information, we also propose possible models for the role of residue 95 in the mechanism of CheY signal transduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two-component regulatory systems, typically composed of a sensor kinase to detect a stimulus and a response regulator to execute a response, are widely used by microorganisms for signal transduction. Response regulators exhibit a high degree of structural similarity and undergo analogous activating conformational changes upon phosphorylation. The activity of particular response regulators can be increased by specific amino acid substitutions, which either prolong the lifetime or mimic key features of the phosphorylated state. We probed the universality of response regulator activation by amino acid substitution. Thirty-six mutations that activate 11 different response regulators were identified from the literature. To determine whether the activated phenotypes would be retained in the context of a different response regulator, we recreated 51 analogous amino acid substitutions at corresponding positions of CheY. About 55% of the tested substitutions completely or partially inactivated CheY, ≈ 30% were phenotypically silent, and ≈ 15% activated CheY. Three previously uncharacterized activated CheY mutants were found. The 94NS (and presumably 94NT) substitutions resulted in resistance to CheZ-mediated dephosphorylation. The 113AP substitution led to enhanced autophosphorylation and may increase the fraction of non-phosphorylated CheY molecules that populate the activated conformation. The locations of activating substitutions on the response regulator three-dimensional structure are generally consistent with current understanding of the activation mechanism. The best candidates for potentially universal activating substitutions of response regulators identified in this study were 13DK and 113AP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: CheY, a small cytoplasmic response regulator, plays an essential role in the chemotaxis pathway. The concentration of phospho-CheY is thought to determine the swimming behaviour of the cell: high levels of phospho-CheY cause bacteria to rotate their flagella clockwise and tumble, whereas low levels of the phos-phorylated form of the protein allow counter-ciockwise rotation of the flagella and smooth swimming. The phosphorylation state of CheY in vivo is determined by the activity of the phosphoryl donor CheA, and by the antagonistic effect of dephosphorylation of phospho-CheY. The dephosphorylation rate is controlled by the intrinsic autohydrolytic activity of phospho-CheY and by the CheZ protein, which accelerates dephosphorylation. We have analysed the effect of CheZ on the dephosphorylation rates of several mutant CheY proteins. Two point mutations were identified which were 50-fold and 5-fold less sensitive to the activity of CheZ than was the wild-type protein. Nonetheless, the phosphorylation and autodephos-phorylation rates of these mutants, CheY23ND and CheY26KE, were observed to be identical to those of wild-type CheY in the absence of CheZ. These are the first examples of CheY mutations that reduce sensitivity to the phosphatase activity of CheZ without being altered in terms of their intrinsic phosphorylation and autodephospborylation rates, interestingly, the residues Asn-23 and Lys-26 are located on a face of CheY far from the phosphorylation site (Asp-57), distinct from the previously described site of inter-action with the histidine kinase CheA, and partially overlapping with a region implicated in interaction with the flagellar switch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 34 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The site of phosphorylation of the chemotaxis response regulator CheY is aspartate 57. When Asp-57 is replaced with an asparagine, the resultant protein can be phosphorylated at an alternative site. We report here that phosphorylation of this mutant protein, CheY D57N, at the alternative site affords the protein activity in vivo in the absence of CheZ. Using a direct phosphopeptide mapping approach, we identified the alternate phosphorylation site as serine 56. Introduction of a Ser→Ala substitution at this position in wild-type CheY had no effect on function. However, replacement of Ser-56 with Ala in CheY D57N abrogated the activity seen in vivo for the CheY D57N single mutant protein, and no phosphorylation of the CheY S56A/D57N double mutant protein was observed in vitro. Construction and analysis of double mutants CheY D57N/T87A and CheY D57N/K109R, which were both inactive, suggested that phosphorylation at Ser-56 or Asp-57 may activate the protein by similar mechanisms. In contrast to CheY D57N, mutant CheY D57E displayed no activity in vivo, despite its ability to be phosphorylated in vitro. Acid–base stability analysis indicated that CheY D57E phosphorylates on an acidic residue, presumably Glu-57. These data suggest that a key determinant of the ability of a phosphoryl group to activate CheY is proximity to the hydrophobic core of the protein, with consequent opportunity to reposition key residues, irrespective of the chemical nature of the linkage attaching the phosphoryl group to CheY.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 336 (1988), S. 139-143 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A cascade of protein phosphorylation, initiated by autophosphorylation of the CheA protein, may be important in the signal transduction pathway of bacterial chemotaxis. A proteolytic fragment of CheA cannot autophosphorylate, but can still transfer phosphate to proteins that generate excitation and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature structural biology 9 (2002), S. 570-575 
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The protein CheZ, which has the last unknown structure in the Escherichia coli chemotaxis pathway, stimulates the dephosphorylation of the response regulator CheY by an unknown mechanism. Here we report the co-crystal structure of CheZ with CheY, Mg2+ and the phosphoryl analog, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Real-time analysis of specific protein-protein interaction is possible using surface plasmon resonance to monitor the changes in refractive index within a micron1 ow cell1'2. Internal to the flow cell is a dextran matrix covalently linked to a gold layer (Fig. 1). Carboxymethyl groups within the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...