ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Interplanetary physics (plasma waves and turbulence; solar wind plasma) ; Space plasma physics (electrostatic structures)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies f ≃ fpe, coherent wave packets with frequencies in the ion acoustic range fpi ≥ f ≥ fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Advances in Space Research 13 (1993), S. 191-203 
    ISSN: 0273-1177
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present the real-time digital data processing system named ‘ARTEMIS’ that was developed and constructed by the Space Research Department (DESPA) of Paris-Meudon Observatory to digitize, calibrate, format, date, process, compress, and archive in real time signals from multichannel receivers. This system is controlled by a multiprocessor computer based on Motorola MC 68010/68020 processors; it permits the automatic, routine recording of 128 parallel channels at a rate up to 300 samples per second and per channel with a 12-bit accuracy (4096 levels of intensity); it is used to process and record the 120 channels of a multichannel solar radiospectrograph in the frequency range 110–469 MHz; the remaining 8 channels are used for a scanning spectrograph in the frequency range 30–80 MHz and a two-dimensional multicorrelator interferometer at 75.5 MHz. The large quantity of raw data is reduced in real-time from about 1.3 Gbytes to about 40 Mbytes per day by the use of an original algorithm for real-time data compression. It is expected that this new facility will allow us to build a very large data base of digitized and accurately calibrated solar events, in order to achieve statistical measurements over long periods of time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 81 (1982), S. 383-394 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We describe the new Solar Radio Spectrograph which has been operated at the Nançay Radio Astronomy Station since December 1978 for the analog part (which uses photographic film data acquisition) and since July 1979 using digital magnetic recording. This instrument was designed and built by the Space Research Department of the Paris Observatory and covers the range 469–110 MHz. The multichannel receiver yields a high sensitivity, as compared to a sweep-frequency receiver and the frequency windows where external interference is present can be eliminated from the data acquisition. The digital recording leads to convenient intensity calibration procedures and allows a modern data-handling over a large dynamic range: 50 dB with a 11 bit resolution. Intermodulation effects due to non linearities have been kept to a minimum by building the multiplexer as a ‘tree’ and distributing the amplification along. The time resolution allows the data to be acquired at a rate of 100 samples per second per frequency channel. The frequency resolution can take two values: 120 channels 1 MHz-wide and 100 channels 200 kHz-wide can be positioned anywhere in the range 110–469 MHz. Some observations are shown including type V and type II-like bursts and harmonically related emission in hook structures. Some future plans are briefly mentioned aiming to perform circular polarization measurements in 120 frequency channels and real time data compression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 90 (1984), S. 401-412 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974–1980 Helios 1 and 2 in situ density observations made in the 0.3–1.0 AU range. The Helios densities were normalized to 1976 with the aid of IMP and ISEE data at 1 AU, and were then sorted into 0.1 AU bins and logarithmically averaged within each bin. The best fit to these 1976-normalized, bin averages is N(R AU) = 6.1R -2.10 cm-3. This model is in rather good agreement with the solar burst determination if the radiation is assumed to be on the second harmonic of the plasma frequency. This analysis also suggests that the radio emissions tend to be produced in regions denser than the average where the density gradient decreases faster with distance than the observed R -2.10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present the new digital solar radio spectrograph located at the Thermopyles station, Greece, operated by the University of Athens. Observations cover the range from 110 to 600 MHz, using a 7-m parabolic antenna. The reception system uses two techniques in parallel: sweep frequency and multi-channel, the latter being based on the Acousto-Optical technique. The data acquisition system is based on two subsystems, a Sun Sparc-5 workstation and a front end based on a VME Motorola system. The two subsystems are connected through the Ethernet and are operated using the VxWorks real-time package. The daily operation is completely automated: pointing of the antenna to the sun, starting and stopping the observations at pre-set times, acquiring data, compressing data by silence suppression in real time, and archiving the data on a routine manner on DAT tapes. Apart from its usual function, this instrument will be used in conjunction with other instruments, including the Nançay decameter array and the low frequency radio receivers on the Wind spacecraft.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Comparing the records of the radio spectrographs ARTEMIS (100–500 MHz) on the ground and URAP (1–1000 kHz) on the Ulysses spacecraft, we find that most type III bursts extend from the corona to the solar wind. Using the positions of the associated flares, and assuming an average intensity ratio between these two frequency ranges, we derive for the first time the average radiation pattern of interplanetary type III bursts. We find that at 800 kHz it is shifted east of the radial direction by 30° and has a half-width of about 80° at maximum/10; the shift and width increase towards lower frequencies. Ulysses high-latitude observations show that the cross-section perpendicular to the heliospheric equator is about the same. We interpret these properties by refraction effects in local density gradients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The WAVES investigation on the WIND spacecraft will provide comprehensive measurements of the radio and plasma wave phenomena which occur in Geospace. Analyses of these measurements, in coordination with the other onboard plasma, energetic particles, and field measurements will help us understand the kinetic processes that are important in the solar wind and in key boundary regions of the Geospace. These processes are then to be interpreted in conjunction with results from the other ISTP spacecraft in order to discern the measurements and parameters for mass, momentum, and energy flow throughout geospace. This investigation will also contribute to observations of radio waves emitted in regions where the solar wind is accelerated. The WAVES investigation comprises several innovations in this kind of instrumentation: among which the first use, to our knowledge, of neural networks in real-time on board a scientific spacecraft to analyze data and command observation modes, and the first use of a wavelet transform-like analysis in real time to perform a spectral analysis of a broad band signal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10−1 to 105 cm−3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...