ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Series available for loan
    Series available for loan
    Ottawa : Geological Survey of Canada
    Associated volumes
    Call number: SR 90.0008(74-53)
    In: Paper
    Type of Medium: Series available for loan
    Pages: V, 17 S. + 2 pl.
    Series Statement: Paper / Geological Survey of Canada 74-53
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 33/1999
    Pages: 1135 S. + 1 CD-ROM
    Edition: überarb.Neuaufl.
    ISBN: 3827253993
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-19
    Description: The rapid adoption of wireless communication and sensors technology has raised the awareness of many laboratories about the field of network embedded system. Most researchers aim to exploit these advances to enable technological assistance of frail persons in smart homes. However, to reach the full potential of applications using network embedded systems such as assistive smart home, scientists need to work toward the creation of support services. In this paper, we present an accurate passive RFID localization technique, which can easily be implemented and deployed in various environments, coupled to a complete human activity recognition model. The goal of this paper is to demonstrate, through concrete experiments, that support services can enable powerful solution to long-lived challenges of the network embedded system community. Particularly, the model exploits qualitative spatial reasoning from RFID localization of objects in the smart home to learn and recognize the basic and instrumental activities of daily living of a resident. Our system was deployed in a real smart home, and the results obtained were quite encouraging. The developed RFID technique gives an average precision of ±14.12 cm, and the recognition algorithm recognizes up to 92% activities.
    Print ISSN: 1550-1329
    Electronic ISSN: 1550-1477
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-01
    Print ISSN: 0219-1377
    Electronic ISSN: 0219-3116
    Topics: Computer Science
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-01
    Print ISSN: 1550-1329
    Electronic ISSN: 1550-1477
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-27
    Description: RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences that provides a single access point to 44 RNA resources and 〉18 million ncRNA sequences from a wide range of organisms and RNA types. RNAcentral now also includes secondary (2D) structure information for 〉13 million sequences, making RNAcentral the world’s largest RNA 2D structure database. The 2D diagrams are displayed using R2DT, a new 2D structure visualization method that uses consistent, reproducible and recognizable layouts for related RNAs. The sequence similarity search has been updated with a faster interface featuring facets for filtering search results by RNA type, organism, source database or any keyword. This sequence search tool is available as a reusable web component, and has been integrated into several RNAcentral member databases, including Rfam, miRBase and snoDB. To allow for a more fine-grained assignment of RNA types and subtypes, all RNAcentral sequences have been annotated with Sequence Ontology terms. The RNAcentral database continues to grow and provide a central data resource for the RNA community. RNAcentral is freely available at https://rnacentral.org.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2023-07-19
    Description: This dataset compiles selected limnological properties of a series of thermokarst (thaw) lakes in Central Yakutia (Eastern Siberia). These properties were measured during fall 2018 (September), winter 2019 (March-April), spring 2019 (May), and summer 2019 (August). These data span four seasons (Fall, Winter, Spring, and Summer) 2018-2019. The lake type designation is based on field observations, past radiocarbon dating of lake sediments, geochemical signatures of lake waters, and a multiple-stage development model of thermokarst lakes. Data were collected at the surface (~ 30 cm depth) from lake shores. Specific conductivity (accuracy ±1% of reading), temperature (accuracy ±0.2°C), dissolved oxygen (accuracy ±1% of reading or 1% saturation) and pH (accuracy ±0.2) were measured using a YSI Pro DSS multiprobe sensor. Water samples were collected to analyze dissolved organic carbon (DOC). Samples were filtered using baked glass fiber filters (Whatman GF/F, 0. 7µm), acidified to pH 2 with ultra-pure HCl and stored in baked glass vials. DOC concentration was measured using a TOC-5000A analyzer (Shimadzu, Japan). The quantification limit was 1 mg L-1. Above this value, the analytical uncertainty was estimated at ±0.1 mg L-1. Reference material included ION-915 ([DOC]= 1.37 ± 0.41mg C L-1) and ION 96.4 ([DOC]= 4.64 ± 0.70 mg C L-1) (Environment and Climate Change Canada, Canada).
    Keywords: Carbon, organic, dissolved; Central_Yakutia_thermokast_lakes; Central Yakutia; Conductivity, specific; Dissolved Organic Carbon; dissolved oxygen; Lake; LAKE; Lake type; LATITUDE; limnology; LONGITUDE; Oxygen, dissolved; Permafrost; pH; Sampling lake; Season; Temperature; Temperature, water; thermokarst lakes; TOC-5000A analyzer, Shimadzu, Japan; Year of observation; YSI Pro DSS multiprobe sensor
    Type: Dataset
    Format: text/tab-separated-values, 939 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-03
    Description: Eight overlapping sediment cores, representing an approximately 6.6 m–long composite sequence, were collected on March 24, 2013 from Lake Malaya Chabyda in Central Yakutia (exact coring location 61°57.509' 129°24.500'). Sampling was conducted during a German–Russian Expedition (“Yakutia 2013”) as a cooperation between the North Eastern Federal State University in Yakutsk (NEFU) and the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI). To penetrate ca. 1 m of lake ice cover, 250-mm-diameter holes were drilled using a hand-held Jiffy ice auger. Water depth was measured using an Echo sounder (HONDEX PS-7 LCD) and a calibrated rope for verification. 100 cm-long parallel cores were collected at 2 m water depth using a Russian peat corer and supported by an UWITEC gravity coring system. Cores were stored in waterproof sealed, transparent PVC plastic tubes in cool and dark conditions. After the field season, the cores were transported to Potsdam, Germany and stored at 4°C in the cold rooms at AWI. The cores did not experience any visible drying or surface oxidation during storage. High–resolution X–ray fluorescence (XRF) analyses were carried out with 10 mm resolution on the entire sequence using an Avaatech XRF core scanner at AWI (Bremerhaven, Germany) with a Rh X-ray tube at 10 kV (without filter, 12 s, 1.5 mA) and 30 kV (Pd-thick filer, 15 s, 1.2 mA). The sediment surface was cleaned, leveled, and covered with a 4µm ultralene foil to avoid sediment desiccation prior to XRF scanning. Individual element counts per second (CPS) were transformed using a centered log transformation (CLR) and element ratios were transformed using an additive log ratio (ALR) to account for compositional data effects and reduce effects from variations in sample density, water content, and grain size. Statistical analysis was completed using the Python programming language (Python Software Foundation, https://www.python.org/). XRF analysis of the sequence indicated 24 detectable elements and a subset of these were selected for analysis based on low element χ2 values. These selected elements include the major rock forming elements of Silicon (Si) (Chi2 1.4), Calcium (Ca) (Chi2 6.3), Titanium (Ti) (Chi2 1.3), Rubidium (Rb) (Chi2 0.6), Strontium (Sr) (Chi2 0.7), Zircon (Zr) (Chi2 0.6) and the redox sensitive, productivity indicating elements of Manganese (Mn) (Chi2 1.3), Iron (Fe) (Chi2 2.5), and Bromine (Br) (Chi2 0.8). All subsequent analyses took place after the extracted subsamples had been freeze–dried until completely dry (approximately 48 hours). Grain size analysis was conducted on 18 samples that were chosen to span the entire sequence at relatively regular intervals. The samples were first treated for five weeks with H2O2 (0.88 M) in order to isolate clastic material. After treatment, seven samples were eliminated from the analysis because the remaining inorganic sediment fraction was too low for detection by the laser grain size analyzer. The remaining samples were homogenized using an elution shaker for 24 h and then analyzed using a Malvern Mastersizer 3000 laser. Standard statistical parameters (mean, median, mode, sorting, skewness, and kurtosis) were determined using GRADISTAT 9.1. Total carbon (TC), total organic carbon (TOC), and total nitrogen (TN) analyses were completed after the freeze–dried subsamples were ground in a Pulverisette 5 (Fritsch) planetary mill at 3000 rpm for 7 minutes. TC and TN were measured in a carbon–nitrogen–sulphur analyzer (Vario EL III, Elementar). Five mg of sample material were encapsulated in tin (Sn) capsules together with 10 mg of tungsten–(VI)–oxide. The tungsten–(VI)–oxide ensures complete oxidation of the sample during the measurement process. Duplicate capsules were prepared and measured for each subsample. Blanks and calibration standards were placed every 15 samples to ensure analytical accuracy (〈 ± 0.1 wt%). Between each sample spatula was cleaned with KIMTECK fuzz-free tissues and isopropyl. Analysis of TOC began by removing the inorganic carbon fraction by placing each subsample in a warm hydrochloric acid solution (1.3 molar) for at least three hours and then transferring the sample to a drying oven. The TC measured for each subsample in the previous analysis was used to determine the amount of sample required for the TOC analysis. The appropriate amount of sample was weighted in a ceramic crucible and analyzed using the Vario Max C, Elementar. The TOC/TN ratio was converted to the TOC/TNatomic ratio by multiplying the TOC/TN ratio by 1.167 (atomic weight of carbon and nitrogen). Total inorganic carbon (TIC) analysis was completed using a Vario SoilTOC cube elemental analyzer after combustion at 400ºC (TOC) and 900ºC (TIC) (Elementar Corp., Germany). Calculation of δ13C was completed twice for a subset of samples using two different methodologies. The analysis completed at the AWI Potsdam ISOLAB Facility removed carbonate by treating the samples with hydrogen chloride (12 M HCl) for three hours at 97 °C, then adding purified water and decanting and washed three times. Once the chloride content was below 500 parts per million (ppm), the samples were filtered over a glass microfiber (Whatman Grade GF/B, nominal particle retention of 1.0 µm). The residual sample was dried overnight in a drying cabinet at 50°C. The dry samples were manually ground for homogenization and weighted into tin capsules and analyzed using a ThermoFisher Scientific Delta–V–Advantage gas mass spectrometer equipped with a FLASH elemental analyzer EA 2000 and a CONFLO IV gas mixing system. In this system, the sample is combusted at 1020°C in O2 atmosphere so that the OC is quantitatively transferred to CO2, after which the isotope ratio is determined relative to a laboratory standard of known isotopic composition. Capsules for control and calibration were run in between. The isotope composition is given in permil (‰) relative to Vienna Pee Dee Belemnite (VPDB). The analysis of a small subset of samples which took place at Laboratoire des sciences du climat et de l'environnement Isotopic Laboratory for methodological comparison underwent a slightly different treatment, as follows. The sediment underwent a soft leaching process to remove carbonate using pre-combusted glass beakers, HCl 0.6N at room temperature, ultra-pure water and drying at 50 C. The samples were then crushed in a pre-combusted glass mortar for homogenization prior to carbon content and δ13 C analysis. The handling and chemical procedures are common precautions employed with low-carbon-content sediments. Analysis was performed online using a continuous flow EA-IRMS coupling, that is, a Fisons Instrument NA 1500 Element Analyzer coupled to a ThermoFinigan Delta+XP Isotope-Ratio Mass Spectrometer. Two in-house standards (oxalic acid, δ13C =−19.3% and GCL, _13C =−26.7 %) were inserted every five samples. Each in-house standard was regularly checked against international standards. The measurements were at least triplicated for representativeness. The external reproducibility of the analysis was better than 0.1 %, typically 0.06 %. Extreme values were checked twice. Those samples for which the carbonate was leeched at the room temperature, with lower HCl concentration (0.6N), and without a filtration step (samples analyzed at Laboratoire des sciences du climat et de l'environnement Isotopic Laboratory) had δ13C values 0.1‰ to 1.0‰ (average 0.5‰) higher than the samples treated at the higher temperature (97.7 ºC). However, the plotted δ13C curve is nearly identical for the subset of samples which were subjected to both treatments. There is some heterogeneity in the amount of offset between the two treatment methods. This might be related to an asymmetrical distribution of hot acid-soluble organic compounds throughout the sediment core. A correction of ca. +0.5‰ was applied to the results of the high temperature treatment. These values were then combined with the low temperature results to provide a complete dataset for the whole core. The standard deviation (1σ) is generally better than δ13C = ±0.15‰.
    Keywords: AWI_Envi; AWI Arctic Land Expedition; COMPCORE; Composite Core; Holocene; Lake Malaya Chabyda, Yakutia, Russia; Lake sediment core; Late Pleistocene; organic carbon; Paleolimnology; PG2201_site; Polar Terrestrial Environmental Systems @ AWI; RU-Land_2013_Yakutia; Siberian permafrost; stable carbon isotopes δ13C; Yakutia2013
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...