ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: Ices of various kinds (H2O, CO, CO2, CH4, NH3, CH3OH, etc.) comprise a volumetrically significant proportion of objects in the solar system (comets, outer planets, planetary rings, satellites) as well as in interstellar space (astrophysical ices). The refinement of analytical electron microscopy (AEM) procedures for storing, preparing and analyzing ices and other materials at cryogenic temperatures is discussed. These procedures will be essential to the successful analysis of returned comet nucleus samples.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Workshop on Analysis of Returned Comet Nucleus Samples; p 9-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: As determined by impactor samplers flown on ER-2 and DC-8 aircraft, black carbon aerosol (BCA) mass loadings in the stratosphere average 0.6 nanograms per standard cubic meter, or 0.01 percent of the total aerosol. Upper tropospheric BCA increases to 0.3 percent. Low stratospheric concentration is commensurate with present commercial air traffic fuel consumption, given the following assumptions: the BCA emissions are 0.1 grams per kilogram of fuel consumed, 10 percent of route mileage is above the tropopause, and average BCA stratospheric residence time is about one year. Taking BCA into account, the stratospheric single scatter albedo is about 0.99. Using parameters for planned supersonic commercial aircraft, whose emissions will be predominantly in the stratosphere, it is shown that such traffic will double stratospheric BCA concentration. This would reduce the aerosol single scattering albedo by one percent, and double the BCA surface area that is available for heterogeneous chemistry.
    Keywords: ENVIRONMENT POLLUTION
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 16, A
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Abstracts for the International Conference on Asteroids, Comets, Meteors 1991; p 23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Interplanetary dust particles (IDPs) are among the most pristine and primitive extraterrestrial materials available for direct study. Most of the stratospheric particles selected for study from the JSC Curatorial Collection were chondritic in composition (major element abundances within a factor of two of chondritic meteorites) because this composition virtually ensures that the particle is from an extraterrestrial source. It is likely that some of the most interesting classes of IDP's have not been recognized simply because they are not chondritic or do not fit established criteria for extraterrestrial origin. Indeed, mass spectroscopy data from the Giotto Flyby of comet Halley indicate that a substantial fraction of the dust is in the submicron size range and that a majority of these particles contain C, H, O, and/or N as major elements. The preponderance of CHON particles in the coma of Halley implies that similar particles may exist in the JSC stratospheric dust collection. However, the JSC collection also contains a variety of stratospheric contaminants from terrestrial sources which have these same characteristics. Because established criteria for extraterrestrial origin may not apply to such particles in individual cases, and integrated approach is required in which a variety of analysis techniques are applied to the same particle. Non-chondritic IDP's, like their chondritic counterparts, can be used to elucidate pre- and early solar system processes and conditions. The study of non-chondritic IDP's may additionally yield unique information which bears on the nature of cometary bodies and the processing of carbonaceous and other low atomic number materials. A suite of complementary techniques, including Low Voltage Scanning Electron Microscopy (LVSEM), Energy-Dispersive X-ray Microanalysis (EDX), Secondary Ion Mass Spectrometry (SIMS) isotope-ratio imaging and Analytical Electron Microscopy (AEM), were utilized to accomplish the following two objectives: (1) to develop criteria for the unequivocal identification of extraterrestrial non-chondritic IDP's; and (2) to infer IDP parent body, solar nebula, and pre-solar conditions through the study of phases, textures, and components contained within non-chondritic IDP's. The general approach taken is designed to maximize the total information obtained from each particle. Techniques will be applied in order from least destructive to most destructive.
    Keywords: SPACE BIOLOGY
    Type: NASA, Washington, Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life; p 109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the ALH84001 martian meteorite [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: The Future of Mars Surface Exploration; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Type: 34th Lunar and Planetary Science Conference; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: Ophiolite sequences that are located in northern and central California provide easily accessible areas that serve as good analogs for martian crustal rocks. The rock types found in a typical ophiolite sequence compare well with those found in the Mars meteorites, and those expected from spectrophotometric analysis. We have begun investigating and characterizing these sites in order to understand better the processes that may be responsible for the groundwater chemistry, mineralogy and biology of similar environments on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.
    Keywords: Instrumentation and Photography
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...