ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.
    Keywords: Meteorology and Climatology
    Type: (ISSN 0094-8276)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Type: 2001 Symposium Celebrating 10 years of Atmospheric Research; Arcachon; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.
    Keywords: Geosciences (General)
    Type: Atmospheric Chemistry and Physics; Volume 10; No. 8; 3711?3721
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Three ozone tape products from the Solar Backscatter Ultraviolet (SBUV) experiment aboard Nimbus 7 were archived at the National Space Science Data Center. The experiment measures the fraction of incoming radiation backscattered by the Earth's atmosphere at 12 wavelengths. In-flight measurements were used to monitor changes in the instrument sensitivity. Total column ozone is derived by comparing the measurements with calculations of what would be measured for different total ozone amounts. The altitude distribution is retrieved using an optimum statistical technique for the inversion. The estimated initial error in the absolute scale for total ozone is 2 percent, with a 3 percent drift over 8 years. The profile error depends on latitude and height, smallest at 3 to 10 mbar; the drift increases with increasing altitude. Three tape products are described. The High Density SBUV (HDSBUV) tape contains the final derived products - the total ozone and the vertical ozone profile - as well as much detailed diagnostic information generated during the retrieval process. The Compressed Ozone (CPOZ) tape contains only that subset of HDSBUV information, including total ozone and ozone profiles, considered most useful for scientific studies. The Zonal Means Tape (ZMT) contains daily, weekly, monthly and quarterly averages of the derived quantities over 10 deg latitude zones.
    Keywords: GEOPHYSICS
    Type: NAS 1.61:1234 , NASA-RP-1234 , REPT-636
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus-7 satellite provides the primary source of total ozone data for the study of total ozone in the polar regions of the earth. There are two types of instrument related errors: a slowly developing drift in the instrument calibration since the launch of the instrument in October 1978 and an increase in the measurement noise beginning April, 1984. It is estimated that by October 1987, the accumulated error in the TOMS total ozone measurement due to instrument drift is about 6 m-atm-cm. The sign of the error is such that the TOMS is slightly overpredicting the long-term decrease of the Antarctica ozone. The increase in the measurement noise is more difficult to quantify, affecting some measurements by as much as 10 D.U. and others not at all. A detailed analysis of this error and its potential impact on the studies of total ozone from TOMS will be provided. There are three categories of algorithmic errors: (1) error due the unusual shape of the ozone profile in the ozone hole; (2) error caused by very low atmospheric temperatures in the ozone hole affecting the ozone absorption cross-sections at the TOMS wavelengths; and (3) errors resulting from occasionally thick stratospheric clouds that sometimes reach to 20 km in the ozone hole.
    Keywords: ENVIRONMENT POLLUTION
    Type: Polar Ozone Workshop. Abstracts; p 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Faced with conflicting requirements for measuring total ozone with the Solar Backscatter Ultraviolet Spectrometer/Total Ozone Mapping Spectrometer (SBUV/TOMS), a recommended strategy is to select three wavelengths: one at the peak of the ozone absorption cross section spectrum, another at a nearby minimum and a third wavelength that lies just outside the absorption spectrum. A pair formed using the first two wavelengths are then used under most observing conditions; another pair formed using the last two wavelengths are used near the terminator. There is no evidence that the use of additional wavelengths provides any benefit for measuring total ozone. Additional wavelengths, however, are necessary if other atmospheric species, such as SO sub 2, need to be measured.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA. Goddard Space Flight Center, Scientific and Operational Requirements for TOMS Data; p 83
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Contours and gridded values are given for seven years of monthly mean total ozone data derived from observations with the Backscattered Ultraviolet instrument on Nimbus-4 for the Northern and Southern Hemispheres. The instrument, algorithm, uncertainties in derived ozone and systematic changes in the bias with respect to the international groundbased ozone network of Dobson instruments, are discussed.
    Keywords: GEOPHYSICS
    Type: NASA-RP-1098 , REPT-82F0128-VOL-1 , NAS 1.61:1098
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Computer simulations of orbital scenarios were performed to examine the effects of orbital altitude, equator crossing time, attitude uncertainty, and orbital eccentricity on ozone observations by future satellites. These effects were assessed by determining changes in solar and viewing geometry and earth daytime coverage loss. The importance of these changes on ozone retrieval was determined by simulating uncertainties in the TOMS ozone retrieval algorithm. The major findings are as follows: (1) Drift of equator crossing time from local noon would have the largest effect on the quality of ozone derived from TOMS. The most significant effect of this drift is the loss of earth daytime coverage in the winter hemisphere. The loss in coverage increases from 1 degree latitude for + or - 1 hour from noon, 6 degrees for + or - 3 hours from noon, to 53 degrees for + or - 6 hours from noon. An additional effect is the increase in ozone retrieval errors due to high solar zenith angles. (2) To maintain contiguous earth coverage, the maximum scan angle of the sensor must be increased with decreasing orbital altitude. The maximum scan angle required for full coverage at the equator varies from 60 degrees at 600 km altitude to 45 degrees at 1200 km. This produces an increase in spacecraft zenith angle, theta, which decreases the ozone retrieval accuracy. The range in theta was approximately 72 degrees for 600 km to approximately 57 degrees at 1200 km. (3) The effect of elliptical orbits is to create gaps in coverage along the subsatellite track. An elliptical orbit with a 200 km perigee and 1200 km apogee produced a maximum earth coverage gap of about 45 km at the perigee at nadir. (4) An attitude uncertainty of 0.1 degree in each axis (pitch, roll, yaw) produced a maximum scan angle to view the pole, and maximum solar zenith angle).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NAS 1.26:4361 , REPT-91B00079 , NASA-CR-4361
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Raw data from the Solar Backscattered Ultrviolet/Total Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus 7 operation are available on computer tape. These data are contained on two separate sets of RUTs (Raw Units Tapes) for SBUV and TOMS, labelled RUT-S and RUT-T respectively. The RUT-S and RUT-T tapes contain uncalibrated radiance and irradiance data, housekeeping data, wavelength and electronic calibration data, instrument field-of-view location and solar ephemeris information. These tapes also contain colocated cloud, terrain pressure and snow/ice thickness data, each derived from an independent source. The "RUT User's Guide" describes the SBUV and TOMS experiments, the instrument calibration and performance, operating schedules, and data coverage, and provides an assessment of RUT-S and -T data quality. It also provides detailed information on the data available on the computer tapes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-RP-1112 , NAS 1.61:1112 , REPT-910
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...