ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-04-13
    Description: The application of stable oxygen isotopic ratio of surface dwelling Globigerinoides ruber (white variety) (δ¹⁸Oruber) to reconstruct past hydrological changes requires precise understanding of the effect of ambient parameters on δ¹⁸Oruber. The northern Indian Ocean, with huge freshwater influx and being a part of the Indo-Pacific Warm Pool, provides a unique setting to understand the effect of both the salinity and temperature on δ18Oruber. Here, we use a total of 400 surface samples (252 from this work and 148 from previous studies), covering the entire salinity end member region, to assess the effect of seawater salinity and temperature on δ¹⁸Oruber in the northern Indian Ocean. For δ¹⁸O analysis, 10-15 well preserved shells of Globigerinoides ruber white variety, were picked from 250-355 μm size range. The stable oxygen isotopic ratio was measured by using Finnigan MAT 253 isotope ratio mass spectrometer, coupled with Kiel IV automated carbonate preparation device. The precision of oxygen isotope measurements was better than 0.08‰. The analyzed surface δ¹⁸Oruber very well mimics the expected δ¹⁸O calcite estimated from the modern seawater parameters (temperature, salinity and seawater δ¹⁸O). We report a large diagenetic overprinting of δ18Oruber in the surface sediments with an increase of 0.18‰ per kilometer increase in water depth. The salinity exerts the major control on δ¹⁸Oruber (R2 = 0.63) in the northern Indian Ocean, with an increase of 0.29‰ per unit increase in salinity. The relationship between temperature and salinity corrected δ¹⁸Oruber (δ¹⁸Oruber - δ¹⁸Osw) in the northern Indian Ocean [T= -0.59*(δ¹⁸Oruber - δ¹⁸Osw) + 26.40] is different than reported previously based on the global compilation of plankton tow δ¹⁸Oruber data. The revised equations will help in better paleoclimatic reconstruction from the northern Indian Ocean.
    Keywords: 63KA; 905B; 93KL; A15558; A15612; AAS6GC-3; AAS6GC-6; AAS9_21; AAS9/21; AII15-596; AII15-597; AII15-612; All15-585; All15-586; All15-591; All15-592; Andaman Sea; Arabian Sea; BARP-9406; BARP-9407; BARP-9409; BARP-9412; BARP-9413; BARP-9415; BARP-9422; BARP-9426; BARP-9435; BARP-9437; BC; BC21WP7; BCR; Box corer; Box corer (Reineck); Core; CORE; DOD-200; DOD-201; DOD-204; DODO-197; Eastern Arabian Sea; Elevation of event; Event label; Foraminifera; GC; GEMINO I; Globigerinoides ruber; Globigerinoides ruber white, δ18O; Grab; GRAB; Gravity corer; Indian Ocean; IOE_143KK; KAL; Kasten corer; KL; KL-15, AS-03; KL-26, AS-02; KL-36, AS-04; KL-51, AS-07; KL-57, AS-08; KL-74, AS-12; KL-79; KL-87, AS-15; Latitude of event; Longitude of event; M5/3a; M5/3a_422QM; MAKRAN 2; Marion Dufresne (1972); Mass spectrometer MAT253; MD10; MD10-26; MD10-27; MD10-28; MD10-29; MD13; MD13-29; MD13-36; MD13-42; MD13-44; MD13-50; MD13-59; MD13-60; MD13-67; MD13-68; MD76-123; MD76-125; MD76-127; MD76-128; MD76-129; MD76-131; MD76-132; MD76-135; MD76-136; MD77-164; MD77-169; MD77-171; MD77-176; MD77-177; MD77-178; MD77-179; MD77-180; MD77-181; MD77-185; MD77-191; MD77-194; MD77-195; MD77-197; MD77-200; MD77-202; MD77-203; MD77-204; Meteor (1986); MUC; MultiCorer; NIOP_905; NIOP_929; NIOP-B0/C0; NIOP-C2; Northeastern Arabian Sea; northern Indian Ocean; ORKS_08; OSIRIS II; OSIRIS III; oxygen isotope; PAKOMIN; PC; Piston corer; Piston corer (BGR type); QM; Quantameter; RC12; RC12-328; RC12-329; RC12-331; RC12-339; RC12-340; RC12-341; RC12-343; RC12-344; RC12-347; RC14; RC14-35; RC14-36; RC14-37; RC14-39; RC17; RC17-126; RC9-155; RC9-161; RC9-162; Reference/source; Robert Conrad; RVG_167/1_3904; Sagar Kanya; Sample ID; sediment; Sindhu Sadhana; Sindhu Sankalp; Size fraction; SK117; SK117_SC_05; SK117_SC_08; SK117_SC_11; SK117_SC_12; SK117_SC_14; SK117_SC_15; SK117_SC_16; SK117_SC_17; SK117_SC_18; SK117_SC_19; SK117_SC_20; SK117_SC_23; SK117_SC_25; SK117_SC_26; SK117_SC_27; SK117_SC_30; SK117_SC_31; SK117_SC_32; SK117_SC_33; SK117_SC_34; SK117_SC_39; SK117_SC_40; SK117_SC_43; SK117_SC_44; SK117_SC_45; SK117_SC_46; SK117_SC_51; SK126-GC39; SK129-CR05; SK148-GC4; SK157_GC_12; SK157_GC_14; SK157_GC_20; SK157-GC04; SK157-GC18; SK168-GC01; SK17; SK175; SK175_GB_02; SK175_GB_102; SK175_GB_103; SK175_GB_105; SK175_GB_111; SK175_GB_113; SK175_GB_116; SK175_GB_117; SK175_GB_118; SK175_GB_119; SK175_GB_121; SK175_GB_122; SK175_GB_123; SK175_GB_125; SK175_GB_127; SK175_GB_128; SK175_GB_129; SK175_GB_14; SK175_GB_19; SK175_GB_26; SK175_GB_28; SK175_GB_29; SK175_GB_30; SK175_GB_31; SK175_GB_33; SK175_GB_41; SK175_GB_58; SK175_GB_59; SK175_GB_60; SK175_GB_76; SK175_GB_77; SK175_GB_83; SK175_GB_84; SK175_GB_85; SK175_GB_86; SK175_GB_87; SK175_GB_89; SK175_GB_90; SK175_GB_91; SK175_GB_92; SK175_GB_93; SK175_GB_94; SK175_GB_96; SK175_GB_98; SK175_GB_99; SK20-GC185; SK218_1; SK237; SK237_GC09; SK237_SC_03; SK237_SC_04; SK237_SC_05; SK237_SC_06; SK237_SC_07; SK237_SC_11; SK237_SC_12; SK237_SC_13; SK237_SC_14; SK237_SC_16; SK237_SC_21; SK237_SC_22; SK237_SC_23; SK237_SC_27; SK237_SC_29; SK237_SC_32; SK237_SC_33; SK237_SC_34; SK237_SC_36; SK237_SC_37; SK237_SC_42; SK237_SC_43; SK237_SC_44; SK237_SC_46; SK237_SC_47; SK308; SK308_MC-02; SK308_MC-03; SK308_MC-04; SK308_MC-05; SK308_MC-08; SK308_MC-12; SK308_MC-14; SK308_MC-16; SK308_MC-18; SK308_MC-19; SK308_MC-23; SK308_MC-35; SK308_MC-36; SK308_MC-37; SK308_MC-38; SK308_MC-39; SK308_MC-41; SK308_MC-43; SK308_MC-44; SK308_MC-45; SK308_MC-47; SK308_MC-51; SK308_MC-55; SK308_MC-58; SK308_MC-59; SK308_MC-61; SK308_MC-63; SK308_MC-64; SK308_MC-66; SK31_GC_11; SL-1; SL-4; SN-6; SO130; SO130_211KG; SO130_282KG; SO130_285MC; SO28; SO28-05KL; SO28-11KL; SO28-18KL; SO42; SO42-15KL; SO42-26KL; SO42-36KL; SO42-51KL; SO42-57KL; SO42-74KL; SO42-79KL; SO42-87KL; SO90; SO90_39KG; SO90_56KA; Sonne; Southeastern Arabian Sea; Southwestern Bay of Bengal; SPAC; Spade Corer; SS3827G; SSD004; SSD004_G-01; SSD004_G-02; SSD004_G-03; SSD004_G-04; SSD004_G-05; SSD004_MC-01; SSD004_MC-02; SSD004_MC-03; SSD004_MC-04; SSD004_MC-05; SSD004_MC-06; SSD004_MC-07; SSD004_MC-08; SSD004_MC-09; SSD004_MC-10; SSD004_MC-11; SSD004_MC-12; SSD004_MC-13; SSD004_MC-14; SSD004_MC-15; SSD004_MC-16; SSD004_MC-17; SSD004_MC-18; SSD004_MC-19; SSD004_MC-20; SSD004_MC-21; SSD004_MC-23; SSD004_MC-26; SSD004_MC-27; SSD004_MC-28; SSD004_MC-29; SSD004_MC-30; SSD004_MC-31; SSD004_MC-32; SSD004_MC-53; SSD004_MC-54; SSD004_MC-55; SSD004_MC-56; SSD004_MC-57; SSD004_MC-59; SSD004_MC-60; SSD055; SSD055_MC01; SSD055_MC02; SSD055_MC03; SSD055_MC04; SSD055_MC05; SSD055_MC06; SSD055_MC08; SSD055_MC09; SSD055_MC10; SSD055_MC11; SSD055_MC12; SSD067; SSD067_GR04; SSD067_GR05; SSD067_GR10; SSD067_GR11; SSD067_MC02; SSD067_MC04; SSD067_MC05; SSD067_MC06; SSD067_MC07; SSD067_MC08; SSD067_MC09; SSD067_MC10; SSD067_MC11; SSD067_MC12; SSD067_MC13; SSD067_MC14; SSD067_MC16; SSD067_MC17; SSD067_MC21; SSD067_MC22; SSD067_MC24; SSD067_MC26; SSD067_MC29; SSD067_MC30; SSD067_MC31; SSD067_MC32; SSD067_MC33; SSD067_MC34; SSD067_MC36; SSD067_MC37; SSD067_MC38; SSD067_MC41; SSD067_MC42; SSD067_MC43; SSD067_MC44; SSD067_MC45; SSD067_MC46; SSD067_MC47; SSD067_MC49; SSD067_MC50; SSD067_MC51; SSD067_MC53; SSD067_MC54; SSD067_MC55; SSD067_MC56; SSK35; SSK35_SPC-25; SSK35_SPC-26; SSK35_SPC-27; SSK35_SPC-28; SSK35_SPC-29; SSK35_SPC-32; SSK35_SPC-33; SSK35_SPC-34; SSK35_SPC-37; SSK35_SPC-39; SSK35_SPC-42; SSK35_SPC-43; SSK35_SPC-45; SSK98; SSK98_GR01; SSK98_GR02; SSK98_GR03; SSK98_GR04; SSK98_GR05; SSK98_GR06; SSK98_GR10; SSK98_SPC01; SSK98_SPC02; SSK98_SPC03; SSK98_SPC07; SSK98_SPC11; SSK98_SPC12; SSK98_SPC13; SSK98_SPC14; Surface; TN41_32MC; TN47_6GGC; Tyro; V14; V14-101; V14-103; V14-104; V14-106; V14-107; V14-108; V19; V19-176; V19-177; V19-178; V19-183; V19-185; V19-188; V29; V29-15; V29-19; V29-29; V29-30; V34; V34-80; V34-83; V34-85; V34-88; Vema; Western Bay of Bengal
    Type: Dataset
    Format: text/tab-separated-values, 1522 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 1070 (1991), S. 246-252 
    ISSN: 0005-2736
    Keywords: Drug delivery system ; Ganglioside GM"1 ; Liposome ; Peptide drug ; Prolonged circulation ; Protein drug ; Ricin
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Computer Physics Communications 57 (1989), S. 321-324 
    ISSN: 0010-4655
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Computer Science , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods in Physics Research Section A: 260 (1987), S. 55-75 
    ISSN: 0168-9002
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods in Physics Research Section A: 268 (1988), S. 92-104 
    ISSN: 0168-9002
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods in Physics Research Section A: 269 (1988), S. 33-39 
    ISSN: 0168-9002
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-203X
    Keywords: Vigna sublobata ; protoplasts ; microcalli ; shoot bud formation ; plant regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Viable protoplasts of Vigna sublobata L. were isolated enzymatically from hypocotyls of axenic seedlings. Protoplast yields were dependent upon seedling age, with maximum yields (2.25 ± 0.35 × 106 g fwt−1) from seedlings aged 6 d. Protoplasts regenerated cell walls and underwent sustained divisions when cultured in either agarose-solidified or liquid K8P medium. The plating density affected the division frequency and plating efficiency; the division frequency (68 ±0 6.0%) was maximum at 4.0 × 104 ml−1 while plating efficiency was maximum (1.3 ± 0.1%) at 5.0 × 104 ml−1. Dividing protoplasts developed into microcalli, which produced glossy green compact nodular calli on transfer to 8.0 gl−1 w/v agar-solidified medium containing MS salts, B5 organic components, 30 g l−1 sucrose, NAA (0.2–0.5 mg l−1), zeatin riboside (0.5–2.0 mg l−1) and GA3 (0.5–1.0 mg l−1). These calli, after sub-culture on the same medium, produced shoot buds which underwent elongation following transfer of tissues to 6.0 g l−1 agar-solidified B5 medium containing 30g l−1 sucrose, IBA (0.01 mg l−1) and BAP (1.0 mg l−1). Elongated shoots developed roots after transfer to 8.0g l−1 agar-solidified, hormone-free MS medium with 30 g l−1 sucrose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 18 (1999), S. 1543-1545 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 13 (1994), S. 525-527 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...