ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Amphibolites unconformably overlain by a metasedimentary sequence of quartz-muscovite-feldspar-kyanite schists, metagraywackes and epidote-bearing amphibolites occur in the northern portion of the south-western Zamboanga metamorphic basement complex, western Mindanao. These amphibolites (here identified as the Mount Dansalan amphibolites) display relict magmatic textures inherited from cumulate gabbro protoliths. Bulk-rock major and trace-element data are consistent with this hypothesis. Together with the chemistry of relict igneous clinopyroxenes, they indicate a magmatic arc-related signature for the gabbro protoliths. Geochemical data allow us to identify various sources for the associated metasediments: the gabbro themselves for the metagraywackes and a continental basement for the quartz-muscovite-feldspar-kyanite schists. Both sources contributed to the genesis of the epidote-amphibolite metasediments. The compositions of the metamorphic mineral assemblages suggest that the rocks have undergone metamorphism at temperatures ranging from 550°C to 700°C and pressures probably in the range of 5–9 kbar. 40K–40Ar isotopic study of amphibole separates from the Mount Dansalan samples document a metamorphic event dated at 24.6 ± 1.4, 22.2 ± 1.4 and 21.2 ± 1.2 Ma. Our results are in agreement with plate tectonic models which describe the south-western Zamboanga metamorphic basement as a continental terrane. However, its evolution was not as simple as it was usually considered. In particular the basement incorporated slivers of magmatic arc crust, which cannot be unambiguously related to any of the Tertiary arcs documented in the area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract  The silicic volcanic rocks in Central Luzon show a temporal and spatial relationship with its geochemistry. Volcanic centers dated to approximately 5 Ma are silicic in geochemical composition whereas those between 〈5–1 Ma expose basaltic to andesitic rocks. Volcanic centers dated 〈1 Ma are characterized by a wide range of geochemistry encompassing basaltic through andesitic to dacitic signatures. Aside from changes in geochemistry through time, the areas (i.e. fore-arc to back-arc region) where the volcanic centers are formed also vary. The shift in the location of the volcanic centers in Central Luzon is attributed to changes in the dip of subduction of the South China Sea crust along the Manila Trench. Flat subduction resulted from the subduction of the Scarborough Seamount Chain, an oceanic bathymetric high along the Manila Trench west of northern Luzon. However, collision of Luzon with Taiwan in the north and Palawan in the south resulted in steepening of the subduction angle. The silicic volcanic centers in the forearc (Ce/Yb = 20–140) and back-arc (Ce/Yb = 20–60) regions are generally characterized by higher Ce/Yb compared to the basaltic-andesitic volcanic rocks in the main volcanic arc (Ce/Yb = 20) and back-arc (Ce/Yb = 20–30) regions. This across-arc geochemical variation highlights the contributions from the slab, mantle and crust coupled with the effects of geochemical processes that include partial melting, fractionation, magma mixing and mantle–melt interaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Two new cases of association of adakites with ‘normal’ island arc lavas and transitional adakites are recognized in the islands of Batan and Negros in northern and central Philippines, respectively. The Batan lavas are related to the subduction of the middle Miocene portion of the South China Sea basin along the Manila trench; those of Negros come from the almost aseismic subduction of the middle Miocene Sulu Sea crust along the Negros trench. The occurrence of the Batan adakites is consistent with previous findings showing adakitic glass inclusions within minerals of mantle xenoliths associated with Batan arc lavas. The similarity of adakite ages (1.09 Ma) and that of the metasomatized xenoliths (1 Ma) suggests that both are linked to the same slab-melting and metasomatic event. Earlier Sr, Pb and Nd-isotopic studies, however, also reveal the presence of an important sediment contribution to the Batan lava geochemistry. Thus, the role played by slab melts, assumed to have mid-ocean ridge basalts-like (MORB) isotopic characteristics, in enriching the Batan subarc mantle is largely masked by the sediment input. The Negros adakites are present only in Mount Cuernos, the volcanic center nearest to the Negros trench. Batch partial melting calculations show that the Negros adakites could be derived from a garnet amphibolitic source with normal-MORB (N-MORB) geochemistry. This is supported by the MORB-like isotopic characteristics of the Mount Cuernos lavas. The volcanic rocks from the other volcanoes consist of normal arc and transitional adakitic lavas that have slightly higher Sr- and Pb-isotopic ratios, probably due to slight sediment input. Mixing of adakites and normal arc lavas to produce transitional adakites is only partly supported by trace element geochemistry and not by field evidence. The transitional adakites can be modeled as partial melts of an adakite-enriched mantle. Trace element enrichment of non-adakitic lavas could reflect the interaction of their mantle source with uprising slab melts, as metasomatic mantle minerals scavenge certain trace elements from the adakitic fluids. Therefore, in arcs beneath which thick (up to 2 km) continent-derived detrital sediments are involved in subduction, like in Batan, the sediment signature can overwhelm the slab melt input. In arcs like Negros where slow subduction could cause a more efficient scraping of thinner (approximately 1 km) detrital sediments, the contribution of slab melts is easier to detect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The easternmost stratovolcano along the Central American arc is El Valle volcano, Panama. Several andesitic and dacitic lava flows, which range in age 5–10 Ma, are termed the old group. After a long period of quiescence (approximately 3.4 Ma), volcanic activity resumed approximately 1.55 Ma with the emplacement of dacitic domes and the deposition of dacitic pyroclastic flows 0.9–0.2 Ma. These are referred to as the young group. All of the samples analyzed are calc-alkaline andesites and dacites. The mineralogy of the two groups is distinct; two pyroxenes occur in the old-group rocks but are commonly absent in the young group. In contrast, amphibole has been found only in the young-group samples. Several disequilibrium features have been observed in the minerals (e.g., oscillatory zoning within clinopyroxenes). These disequilibrium textures appear to be more prevalent among the old- as compared with the young-group samples and are most likely the result of magma-mixing, assimilation, and/or polybaric crystallization. Mass-balance fractionation models for major and trace elements were successful in relating samples from the old group but failed to show a relationship among the young-group rocks or between the old- and young-group volcanics. We believe that the old-group volcanics were derived through differentiation processes from basaltic magmas generated within the mantlewedge. The young group, however, does not appear to be related to more primitive magmas by differentiation. The young-group samples cannot be related by fractionation including realistic amounts of amphibole. Distinctive geochemical features of the young group, including La/Yb ratios〉15, Yb〈1, Sr/Y〉150, and Y〈6, suggest that these rocks were derived from the partial melting of the subducted lithosphere. These characteristics can be explained by the partial melting of a source with residual garnet and amphibole. Dacitic material with the geochemical characteristics of subducted-lithosphere melting is generated apparently only where relatively hot crust is subducted, based on recent work. The young dacite-genesis at El Valle volcano is related to the subduction of relatively hot lithosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-10-08
    Description: Mindanao Island in the southern Philippines is made up of two blocks: the island-arc-related eastern-central Mindanao block and the continental Zamboanga Peninsula, which contains several ophiolitic bodies and melanges. The Middle Miocene Siayan-Sindangan Suture Zone represents the tectonic boundary between the island-arc and continental blocks. A Middle Miocene age of collision is interpreted from the unconformity between the Late Miocene Motibot Formation and the underlying Middle Miocene Gunyan Melange, which serves as basement to the suture zone. The Middle Miocene Siayan-Sindangan Suture Zone was formerly a subduction zone complex that was reactivated as a sinistral strikeslip fault following the collision of eastern-central Mindanao with the Zamboanga Peninsula. New 40K-40Ar whole-rock dating of lava flows from the Zamboanga Peninsula has revealed Middle to Late Miocene ages, which is consistent with the possible existence of an Early Miocene Sulu Trench. The possibility that the Zamboanga Peninsula could be part of the Palawan microcontinental block has been forwarded by previous workers, due to their similarity in stratigraphy, geological structure and metamorphic rock suites. The Palawan microcontinental block separated from southern China during the opening of the South China Sea in Oligo-Miocene times. If indeed the Zamboanga Peninsula was once part of Palawan, it represents the southernmost part of the rifted southeastern China continental margin.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-11-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-01
    Description: Apart from its large reserves of Cu-Co-Zn mineralization contained within stratiform ore beds or mantos, the Boleo district of central Baja, Mexico, also contains significant concentrations of Mn oxides (typically 2-3 wt % Mn) interspersed with hydrothermal sulfides and both hydrothermal and weathering-related metal oxide minerals. Within the mantos, Mn oxides occur as concentric nodules, disk-shaped concretions, laminae, granules or aggregates, veins, dendrites, and various replacements. The oxides are composed of varying amounts of hollandite, cryptomelane, todorkite, romanechite, pyrolusite, and X-ray amorphous Mn oxide. Chemically, the manto oxides are unique owing to their extraordinarily high abundances of Co, Cu, Pb, and Zn (typically 2-5 wt %, but up to 23 wt %). Existing mineralogical and geochemical classifications are ambiguous regarding the genetic classification of Mn oxides within the mantos. A new MnO2-Fe2O3t-MgO diagram is proposed in order to discriminate among highly metalliferous Mn oxides. Based on the new classification scheme, manto Mn oxides record a complex interaction between hydrothermal and diagenetic processes. To better understand the mechanism of oxide deposition, radiogenic isotopes (Sr and Pb) and REE geochemistry were used to delineate fluid and metal sources. Isotopic and REE constraints indicate that the Boleo Mn oxides are largely hydrothermal in origin; however, they show varying degrees of modification resulting from diagenetic processes. Hydrothermal Mn oxides are syngenetic (synsedimentary to syndiagenetic) in origin and were precipitated in association with sulfides, reflecting localized variations in redox conditions within the manto sequence, due to the downward infiltration of metal-bearing brines. Apart from morphological and stratigraphic evidence (e.g., occurrence of nodular crusts along the upper contact of the manto), a syngenetic origin is supported by a single K-Ar date of 7.0 {+/-} 0.2 Ma, which is within the estimated age range for deposition of Boleo Formation clastic sediments. Interaction between brine and seawater or brine and pore fluid, as it infiltrates the sedimentary pile, produced hydrothermal precipitates with certain hydrogenetic attributes (i.e., positive Ce anomaly, LREE enrichment). On the other hand, oxides with hydrogenetic and with mixed hydrothermal-hydrogenetic affinities represent diagenetic alteration and remobilization of earlier formed hydrothermal oxides by meteoric fluids. By far the greatest degree of remobilization occurred in response to compactional dewatering of the manto, where the dewatering pore waters enriched the uppermost manto strata in Mn, Fe, Zn, Co, and to lesser degrees, Cu. Later diagenetic modifications coincided with the development of a supergene overprint, which typifies Boleo Formation strata at elevations above the present-day water table.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...