ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006
    Keywords: TF VII ; Task Force VII ; Temporal and Spatial Change of Stress and Strain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006
    Keywords: TF VII ; Task Force VII ; Temporal and Spatial Change of Stress and Strain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-31
    Description: The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver-function analysis on a dense 2D seismic array. Mapping of slab geometry for over 300 km along-strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydratation embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-28
    Description: Nature Geoscience 8, 961 (2015). doi:10.1038/ngeo2586 Authors: Donna J. Shillington, Anne Bécel, Mladen R. Nedimović, Harold Kuehn, Spahr C. Webb, Geoffrey A. Abers, Katie M. Keranen, Jiyao Li, Matthias Delescluse & Gabriel A. Mattei-Salicrup Subduction zones worldwide exhibit remarkable variation in seismic activity over short distances of about tens of kilometres along their length. The properties of the subducting oceanic plate are believed to influence this seismic behaviour. However, comparisons between seismicity and plate attributes such as thermal structure made over large scales of hundreds of kilometres typically yield poor correlations. Here we present results from controlled-source seismic data collected offshore of the Alaska Peninsula. We find that fabric in the subducting oceanic plate—the orientation and style of remnant faults originally created at the mid-ocean ridge—can contribute to abrupt changes in faulting and hydration of the plate during bending before subduction. Variations in fabric, bending faulting and hydration correlate with changes in seismicity throughout the subduction zone. More interplate and intermediate-depth intraplate earthquakes are observed where the pre-existing fabric is aligned with the trench and there is more bend faulting and hydration. This suggests that pre-existing structures in the subducting plate are an important control on abrupt variations in deformation and plate hydration and on globally observed short-wavelength variations in seismicity at subduction zones.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-15
    Description: SUMMARY We investigate by means of a 3-D geomechanical model the relationship between structural elements and contemporary kinematics in the Marmara Sea region, northwest Turkey. The recently imaged fault system beneath the Marmara Sea is incorporated into the model as frictional surfaces with varying strike and dip. The Main Marmara Fault is implemented as through-going and is accompanied by mostly non-vertical second-order faults. Topography, basement-topography and the Moho become mechanically effective through changes in density and elastic parameters across these horizons. The model is subjected to gravity and kinematic boundary conditions. The ultimate goal of this study is to set up a 3-D model that is consistent with both, kinematic observations and stress data. The stress results are presented in a complementary paper. In this paper we present the modelled long-term 3-D kinematics in terms of fault slip rates, rotations, vertical motion and sense of fault slip. The model results agree with Global Positioning System velocities, geological fault slip rates, palaeomagnetic measurements and with the observed pattern of subsidence and uplift. Furthermore, our tectonically driven vertical velocities can be linked to landscape and basin evolution and to features of sedimentation. Our results indicate that the Main Marmara Fault can be interpreted as a through-going fault that slips almost purely in a strike-slip sense. Nevertheless, and not contradictory to the previous statement, there is significant dip-slip motion at some sections of the Main Marmara Fault. The agreement of the modelled 3-D kinematics with model-independent observations supports that the main structural details of the fault system are accounted for. Sensitivity analysis of model parameters reveals that changes in rock properties and the initial stress state have minor influence on the 3-D kinematics. We conclude that the 3-D structure of the fault system is the key control of the kinematics. The slip rate of the Main Marmara Fault from our model is lower than previous estimates and shows high variability along strike (12.8–17.8 mm a –1 ). The latter indicates that stress accumulation is non-uniform along strike.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-20
    Description: Three unburied ocean bottom seismometers (OBS) equipped with Trillium 240 s broad-band seismometers recorded spheroidal free oscillations of the Earth out to periods over 1000 s period, for the M = 8.1, April 1, 2007 Solomon Islands earthquake. In contrast to broadband observatories of the global network that operate in quiet continental locations, these instruments were dropped on the several-km thick layer of sediments of the forearc and accretionary wedge of the Lesser Antilles subduction zone. Furthermore, a high ambient noise level due to the ocean surface infragravity waves is expected to cover the frequency band of Earth's normal modes band when recorded at these sites. In spite of these hostile environmental conditions, the frequency of clearly defined peaks of the Earth's normal modes were measured after the earthquake. This suggests that the recording of normal modes and long period waves can be extended to parts of the hitherto inaccessible ocean with currently available OBS technology.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-01
    Description: The Central Basin in the Sea of Marmara is a syntectonic basin related to the evolution of the North Anatolian fault. A well-dated (ca. 15.5–16 ka) homogenite sediment can be used as a marker in three-dimensional depth model calculations, allowing a precise determination of the seafloor subsidence rates during the Holocene. A steady-state model based on the propagation of the rates downward through the basin fill provides a good correlation with the deeper seismic reflection imagery for the past 250 ka but indicates variation of subsidence pattern for older ages. Heat flow measured at the seafloor is affected by sedimentation blanketing effects. Heat flow and subsidence data can only be reconciled if the Central Basin depocenter migrated northward with time. According to that scenario, subsidence and deposition started earlier (ca. 5–3.5 Ma) in the southern subbasin, and an acceleration of subsidence in the northern subbasin occurred at ca. 2.5–1.5 Ma. These results allow us to propose that a southern fault system distinct from the Main Marmara fault is responsible for the southern onset of the subsidence. Changes in the fault network and slip rates are implied during the last 2.5–1.5 Ma despite no apparent change since 250 ka.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: 〈p〉The Cape Fear Slide is one of the largest (〉25 000 km〈sup〉3〈/sup〉) submarine slope failure complexes on the US Atlantic margin. Here we use a combination of new high-resolution multichannel seismic data (MCS) from the National Science Foundation Geodynamic Processes at Rifting and Subducting Margins (NSF GeoPRISMS) Community Seismic Experiment and legacy industry MCS to derive detailed stratigraphy of this slide and constrain the conditions that lead to slope instability. Limited outer-shelf and upper-slope accommodation space during the Neogene, combined with lowstand fluvial inputs and northwards Gulf Stream sediment transport, appears to have contributed to thick Miocene and Pliocene deposits that onlapped the lower slope. This resulted in burial of an upper-slope bypass zone developed from earlier erosional truncation of Paleogene strata. These deposits created a broad ramp that allowed accumulation of thick Quaternary strata across a low-gradient (〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-30
    Description: The Cape Fear Slide is one of the largest (〉25 000 km 3 ) submarine slope failure complexes on the US Atlantic margin. Here we use a combination of new high-resolution multichannel seismic data (MCS) from the National Science Foundation Geodynamic Processes at Rifting and Subducting Margins (NSF GeoPRISMS) Community Seismic Experiment and legacy industry MCS to derive detailed stratigraphy of this slide and constrain the conditions that lead to slope instability. Limited outer-shelf and upper-slope accommodation space during the Neogene, combined with lowstand fluvial inputs and northwards Gulf Stream sediment transport, appears to have contributed to thick Miocene and Pliocene deposits that onlapped the lower slope. This resulted in burial of an upper-slope bypass zone developed from earlier erosional truncation of Paleogene strata. These deposits created a broad ramp that allowed accumulation of thick Quaternary strata across a low-gradient (〈3.5°) upper slope. Upslope of one of the larger headwalls, undulating Quaternary strata appear to downlap onto a buried failure plane. Many of the nested headwalls of the upper-slope portion of slide complex are underlain by deformed strata, which may be the result of fluid migration associated with localized subsidence from salt migration. These new data and observations suggest that antecedent margin physiography, sediment loading and substrate fluid flow were key factors in preconditioning the Cape Fear slope for failure.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-13
    Description: A 3-D tomographic inversion of first arrival times of shot profiles recorded by a dense 2-D OBS network provides an unprecedented constraint on the P -wave velocities heterogeneity of the upper-crustal part of the North Marmara Trough (NMT), over a region of 180 km long by 50 km wide. One of the specific aims of this controlled source tomography is to provide a 3-D initial model for the local earthquake tomography (LET). Hence, in an original way, the controlled source inversion has been performed by using a code dedicated to LET. After several tests to check the results trade-off with the inversion parameters, we build up a 3-D a priori velocity model, in which the sea-bottom topography, the acoustic and the crystalline basements and the Moho interfaces have been considered. The reliability of the obtained features has been checked by checkerboard tests and also by their comparison with the deep-penetration multichannel seismic profiles, and with the wide-angle reflection and refraction modelled profiles. This study provides the first 3-D view of the basement topography along the active North Anatolian fault beneath the Marmara Sea, even beneath the deepest part of three sedimentary basins of NMT. Clear basement depressions reaching down 6 km depth below the sea level (bsl) have been found beneath these basins. The North Imrali Basin located on the southern continental shelf is observed with a similar sedimentary thickness as its northern neighbours. Between Central and Çinarcik basins, the Central High rises up to 3 km depth below (bsl). Its crest position is offset by 10 km northwestward relatively to the bathymetric crest. On the contrary, Tekirdag and Central basins appear linked, forming a 60-km-long basement depression. Beneath the bathymetric relief of Western High low velocities are observed down to 6 km depth (bsl) and no basement high have been found. The obtained 3-D Vp heterogeneity model allows the consideration of the 3-D supracrustal heterogeneity into the future earthquake relocations in this region. The topographic map of the pre-kinematic basement offers the possibility to take into account the locking depth variations in future geohazard estimations by geomechanical modelling in this region.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...