ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2020-01-16
    Description: A novel conversion algorithm is presented that combines the fidelity of indirect optimization methods with the generality of direct methods to more easily solve time-optimal, finite-burn pseudo-rendezvous problems. An algorithm is described that converts a set of multiple-impulses, representing the entirety or a portion of a high- or low-thrust maneuver, to an exact time optimal finite-burn trajectory for a thrust limited, constant exhaust velocity spacecraft. A pseudo-rendezvous problem is one that yields a solution whose final time, position and velocity state is equal to that of the original post-impulsive trajectory. An iterative adjoint-control transformation is used to initialize the optimal control two-point boundary value problem. Examples are shown for both high and low-thrust non-coplanar Earth orbit transfers, as well as a low-thrust Hohmann-type Earth-Mars transfer.
    Keywords: Astrodynamics
    Type: JSC-E-DAA-TN69253 , AIAA/AAS Space Flight Mechanics Meeting; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...