ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-10-19
    Description: Much of the world’s heavy oil is found in Cretaceous reservoir rocks due to a combination of tectonic, climatic, geological, and biological factors. Here we study Cretaceous oil sands from the Neuquén Basin (Argentina), Sergipe-Alagoas Basin (Brazil), Alberta (Canada), Dahomey Basin (Nigeria), Uinta Basin (USA), Western Moray Firth Basin (United Kingdom), and Wessex Basin (United Kingdom) to improve our understanding of the origin of the heavy oils. Our results indicate that the oils were generated as conventional light oil, which later degraded into heavy oils, rather than thermally cracked oils from over matured source rocks. All the studied Cretaceous oil sands are enriched in the polar fraction, and the total ion current (TIC) fragmentogram of the saturate fractions show unresolved complex mixture (UCM) humps indicating that the oils have undergone biodegradation. Sterane data for the Cretaceous oil sands show a selective increase in the C 29 regular steranes relative to C 27 and C 28 regular sterane, which is also consistent with biodegradation. There is also evidence for diasterane degradation in some samples which are related, suggesting severe biodegradation. The trisnorhopane thermal maturity indicator showed that the Cretaceous oil sands have thermal maturity levels equivalent to 0.66–1.32% R o , consistent with an early to late oil window. 25-norhopanes were not detected in any of the studied Cretaceous oil sands despite sterane degradation. This strongly suggests that biodegradation in the Cretaceous oil sands occurred at shallow depths rather than at greater depths. Pyrite associated with the Cretaceous oil sands was found to be consistently isotopically light. The isotopic fractionation between these pyrites and contemporary seawater sulfate was calculated using the mean 34 S values and the established seawater composition curve. This fractionation exceeded the maximum known kinetic isotope fractionation of approximately 20 that is possible from non-biogenic mechanisms, such as thermochemical sulfate reduction. This strongly suggests that the pyrite precipitated from an open system by means of microbial sulfate reduction as part of the biodegradation process.
    Print ISSN: 0007-4802
    Electronic ISSN: 0007-4802
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-08
    Description: Neoproterozoic petroleum systems occur in several parts of the world, based on organic-rich hydrocarbon source rocks deposited during the late Neoproterozoic high sea level. The Dalradian Supergroup in Argyll, Scotland, shows evidence for coupled source rock and reservoir rock. The Easdale Slate contains organic carbon, rich enough to be a good source rock. Pore spaces of the Scarba Conglomerate are filled with oil residue. Pyrite spatially associated with the oil residue may reflect microbial sulphate reduction. Despite greenschist-facies metamorphism, the Easdale Subgroup records a hitherto unrecognized petroleum system, which adds to a global picture of late Neoproterozoic hydrocarbon generation.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-07
    Description: Seventeen thin sections of Cretaceous oil sands from the Neuquén Basin (Argentina), Sergipe-Alagoas Basin (Brazil), Western Canadian Sedimentary Basin (Canada), Junggar Basin (China), Lower Saxony Basin (Germany), Kangerlussuaq Basin (Greenland), Arabian Basin (Kuwait), Chad Basin (Nigeria), Dahomey Basin (Nigeria), Western Moray Firth Basin (UK), Wessex Basin (UK) and Utah (USA) were examined using the scanning electron microscope (SEM) to improve our understanding on how oil emplacement impairs the progress of diagenesis. Our results show that diagenetic processes affecting sandstones prior to oil emplacement include burial/compaction, silica/calcite cementation, calcite replacement of detrital grains/cements as well as the development of silica overgrowth. Most diagenetic processes were inferred to cease upon oil emplacement into the pores of the sandstones, however, diagenetic processes such as the alteration of detrital grains/cements and precipitation of authigenic minerals/metallic compounds were observed to occur after oil emplacement into the pores of the sandstones. Oil was emplaced in some of the studied Cretaceous oil sands at a relatively early stage when the sandstones were not compacted or cemented. Such Cretaceous oil sands were observed to have had anomalously high porosities of above 38% prior to oil emplacement. The only cement observed in these oil sands are the viscous heavy oils (bitumens) associated with them. Upon extraction of these heavy oils, the oil sands collapse into unconsolidated sands. Occurrence of these bitumen supported Cretaceous sands implies availability of migrating oils while some of the Cretaceous sands were depositing in various basins. Oil emplacement occurred in some of the studied Cretaceous oil sands after the sandstones had undergone some diagenetic processes which did not destroy all their pore spaces. Such Cretaceous oil sands were observed to have had moderate to high porosities of 10%–30% prior to oil emplacement, with some of these sandstones showing evidence of silica overgrowth. Emplacement of oil into the pores of such sandstones is believed to have stopped further development of the silica overgrowth that would have led to the total loss of porosity in these Cretaceous reservoir sands. In some of the studied Cretaceous oil sands, oil emplacement occurred when the sands had experienced a long history of diagenetic events leading to almost total loss of porosity. Common diagenetic features observed in such Cretaceous oil sands include sutured quartz grain-grain contacts and quartz overgrowth.
    Print ISSN: 0007-4802
    Electronic ISSN: 0007-4802
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-13
    Description: In Hungary, wind erosion is one of the most serious natural hazards. Spatial and temporal variation in the factors that determine the location and intensity of wind erosion damage are not well known, nor are the regional and local sensitivities to erosion. Because of methodological challenges, no multi-factor, regional wind erosion sensitivity map is available for Hungary. The aim of this study was to develop a method to estimate the regional differences in wind erosion sensitivity and exposure in Hungary. Wind erosion sensitivity was modelled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available data sets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-11
    Description: In Hungary, wind erosion is one of the most serious natural hazards. Spatial and temporal variation in the factors that determine the location and intensity of wind erosion damage are not well known, nor are the regional and local sensitivities to erosion. Because of methodological challenges, no multi-factor, regional wind erosion sensitivity map is available for Hungary. The aim of this study was to develop a method to estimate the regional differences in wind erosion sensitivity and exposure in Hungary. Wind erosion sensitivity was modelled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available datasets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...