ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-16
    Description: Slow velocity fluid flow problems in small diameter channels have many important applications in science and industry. Many researchers have modeled the flow through renal tubule, hollow fiber dialyzer and flat plate dialyzer using Navier Stokes equations with suitable simplifying assumptions and boundary conditions. The aim of this article is to investigate the hydrodynamical aspects of steady, axisymmetric and slow flow of a general second-order Rivlin-Ericksen fluid in a porous-walled circular tube with constant wall permeability. The governing compatibility equation have been derived and solved analytically for the stream function by applying Langlois recursive approach for slow viscoelastic flows. Analytical expressions for velocity components, pressure, volume flow rate, fractional reabsorption, wall shear stress and stream function have been obtained correct to third order. The effects of wall Reynolds number and certain non-Newtonian parameters have been studied and presented graphically. The obtained analytical expressions are in agreement with the existing solutions in literature if non-Newtonian parameters approach to zero. The solutions obtained in this article may be considered as a generalization to the existing work. The results indicate that there is a significant dependence of the flow variables on the wall Reynolds number and non-Newtonian parameters.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-09
    Description: This article comprises the study of three-dimensional squeezing flow of (CNT-SiO2/H2O) hybrid nanofluid. The flow is confined inside a rotating channel whose lower wall is stretchable as well as permeable. Heat transfer with viscous dissipation is a main subject of interest. We have analyzed mathematically the benefits of hybridizing SiO 2 -based nanofluid with carbon nanotubes ( CNTs ) nanoparticles. To describe the effective thermal conductivity of the CNTs -based nanofluid, a renovated Hamilton–Crosser model (RHCM) has been employed. This model is an extension of Hamilton and Crosser’s model because it also incorporates the effect of the interfacial layer. For the present flow scenario, the governing equations (after the implementation of similarity transformations) results in a set of ordinary differential equations (ODEs). We have solved that system of ODEs, coupled with suitable boundary conditions (BCs), by implementing a newly proposed modified Hermite wavelet method (MHWM). The credibility of the proposed algorithm has been ensured by comparing the procured results with the result obtained by the Runge-Kutta-Fehlberg solution. Moreover, graphical assistance has also been provided to inspect the significance of various embedded parameters on the temperature and velocity profile. The expression for the local Nusselt number and the skin friction coefficient were also derived, and their influential behavior has been briefly discussed.
    Electronic ISSN: 2227-9717
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...