ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge Univ. Press
    Call number: M 04.0260
    Description / Table of Contents: 1. Introduction and background Jonathan Bamber and Antony PaynePart I. Observational Techniques and Methods: 2. In situ measurement techniques: land ice Jon Ove Hagen and Niels Reeh3. In situ measurement techniques: sea ice Peter Wadhams4. Remote sensing measurement techniques Jonathan Bamber and Ron KwokPart II. Modelling Techniques and Methods: 5. Modelling land ice surface mass balance Wouter Greuell and Christophe Genthon6. Modelling land ice dynamics Kees van der Veen and Anthony Payne7. Modelling sea ice dynamics William D. Hibler, IIIPart III. The Mass Balance of Sea Ice: 8. Sea ice observations Seymour Laxon, Ola Johannessen, Martin Miles, Peter Wadhams and John E. Walsh9. Sea-ice modelling Gregory M. FlatoPart IV. The Mass Balance of the Ice Sheets: 10. Greenland: recent mass-balance observations Robert H. Thomas and the PARCA investigators11. Greenland: modelling Roderik van der Wal12. Mass balance of the Antarctic ice sheet: observational aspects Charles Bentley13. Antarctica: modelling Philippe HuybrechtsPart V. The Mass Balance of Ice Caps and Glaciers: 14. Arctic ice caps and glaciers Julian Dowdeswell15. Glaciers and ice caps: historical background and strategies of worldwide monitoring Wilfried Haeberli16. Glaciers and the study of climate and sea-level change Mark Dyurgerov and Mark Meier17. Conclusions, summary and outlook Jonathan Bamber and Antony Payne.
    Type of Medium: Monograph available for loan
    Pages: XVII, 644 S. , Ill. [z.T. farb.], graph. Darst
    ISBN: 0521808952
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sasgen, Ingo; van den Broeke, Michiel R; Bamber, Jonathan L; Rignot, Eric; Sørensen, Louise Sandberg; Wouters, Bert; Martinec, Zdenek; Velicogna, Isabella; Simonsen, Sebastian B (2012): Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303, https://doi.org/10.1016/j.epsl.2012.03.033
    Publication Date: 2020-01-17
    Description: Within the last decade, the Greenland ice sheet (GrIS) and its surroundings have experienced record high surface temperatures (Mote, 2007, doi:10.1029/2007GL031976; Box et al., 2010), ice sheet melt extent (Fettweis et al., 2011, doi:10.5194/tc-5-359-2011) and record-low summer sea-ice extent (Nghiem et al., 2007, doi:10.1029/2007GL031138). Using three independent data sets, we derive, for the first time, consistent ice-mass trends and temporal variations within seven major drainage basins from gravity fields from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al., 2004, doi:10.1029/2004GL019920), surface-ice velocities from Inteferometric Synthetic Aperture Radar (InSAR; Rignot and Kanagaratnam, 2006, doi:10.1126/science.1121381) together with output of the regional atmospheric climate modelling (RACMO2/ GR; Ettema et al., 2009, doi:10.1029/2009GL038110), and surface-elevation changes from the Ice, cloud and land elevation satellite (ICESat; Sorensen et al., 2011, doi:10.5194/tc-5-173-2011). We show that changing ice discharge (D), surface melting and subsequent run-off (M/R) and precipitation (P) all contribute, in a complex and regionally variable interplay, to the increasingly negative mass balance of the GrIS observed within the last decade. Interannual variability in P along the northwest and west coasts of the GrIS largely explains the apparent regional mass loss increase during 2002-2010, and obscures increasing M/R and D since the 1990s. In winter 2002/2003 and 2008/2009, accumulation anomalies in the east and southeast temporarily outweighed the losses by M/R and D that prevailed during 2003-2008, and after summer 2010. Overall, for all basins of the GrIS, the decadal variability of anomalies in P, M/R and D between 1958 and 2010 (w.r.t. 1961-1990) was significantly exceeded by the regional trends observed during the GRACE period (2002-2011).
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L; Clarke, Peter J; Konrad, Hannes; Wilson, Terry; Drinkwater, Mark R (2017): Altimetry, gravimetry, GPS and viscoelastic modelling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA). Earth System Science Data Discussions, 72 pp, https://doi.org/10.5194/essd-2017-46
    Publication Date: 2020-01-17
    Description: A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). In the past decade, much progress has been made in consistently modelling the ice sheet and solid Earth interactions; however, forward-modelling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data - namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends of recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/ICESat; 2003-2009), gravity field change (GRACE; 2003-2009) and bedrock uplift (GPS; 1995-2013). The data analysis is complemented by the forward-modelling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modelling results presented here form the basis for the joint inversion estimate of present-day ice-mass change and GIA in Antarctica. This paper presents the first of two contributions summarizing the work carried out within a European Space Agency funded study, REGINA, (http://www.regina-science.eu).
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schumacher, Maike; King, Matt; Rougier, Jonathan C; Sha, Zhe; Khan, Shfaqat Abbas; Bamber, Jonathan L (2018): A new global GPS data set for testing and improving modelled GIA uplift rates. Geophysical Journal International, 214(3), 2164-2176, https://doi.org/10.1093/gji/ggy235
    Publication Date: 2020-01-17
    Description: We have produced a global dataset of ~4000 GPS vertical velocities that can be used as observational estimates of glacial isostatic adjustment (GIA) uplift rates. GIA is the response of the solid Earth to past ice loading, primarily, since the Last Glacial Maximum, about 20 K yrs BP. Modelling GIA is challenging because of large uncertainties in ice loading history and also the viscosity of the upper and lower mantle. GPS data contain the signature of GIA in their uplift rates but these also contain other sources of vertical land motion (VLM) such as tectonics, human and natural influences on water storage that can mask the underlying GIA signal. A novel fully-automatic strategy was developed to post-process the GPS time series and to correct for non-GIA artefacts. Before estimating vertical velocities and uncertainties, we detected outliers and jumps and corrected for atmospheric mass loading displacements. We corrected the resulting velocities for the elastic response of the solid Earth to global changes in ice sheets, glaciers, and ocean loading, as well as for changes in the Earth's rotational pole relative to the 20th century average. We then applied a spatial median filter to remove sites where local effects were dominant to leave approximately 4000 GPS sites. The resulting novel global GPS dataset shows a clean GIA signal at all post-processed stations and is suitable to investigate the behaviour of global GIA forward models. The results are transformed from a frame with its origin in the centre of mass of the total Earth's system (CM) into a frame with its origin in the centre of mass of the solid Earth (CE) before comparison with 13 global GIA forward model solutions, with best fits with Pur-6-VM5 and ICE-6G predictions. The largest discrepancies for all models were identified for Antarctica and Greenland, which may be due to either uncertain mantle rheology, ice loading history/magnitude and/or GPS errors.
    Type: Dataset
    Format: text/tab-separated-values, 12216 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-18
    Type: Dataset
    Format: application/zip, 5960.0 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-18
    Type: Dataset
    Format: application/zip, 15.0 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gruber, Thomas; Bamber, Jonathan L; Bierkens, Marc F P; Dobslaw, H; Murböck, M; Thomas, M; van Beek, L P H; van Dam, T; Vermeersen, L L A; Visser, P N A M (2011): Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 3(1), 19-35, https://doi.org/10.5194/essd-3-19-2011
    Publication Date: 2020-01-18
    Description: Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-18
    Type: Dataset
    Format: text/tab-separated-values, 103038 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Depoorter, Mathieu A; Bamber, Jonathan L; Griggs, Jennifer; Lenaerts, Jan T M; Ligtenberg, Stefan R M; van den Broeke, Michiel R; Moholdt, Geir (2013): Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 89-92, https://doi.org/10.1038/nature12567
    Publication Date: 2020-01-18
    Description: Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-sheet base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rignot, Eric; Bamber, Jonathan L; van den Broeke, Michiel R; Davis, Curt; Li, Yonghong; van de Berg, Willem Jan; van Meijgaard, Erik (2008): Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1(2), 106-110, https://doi.org/10.1038/ngeo102
    Publication Date: 2020-01-18
    Description: Large uncertainties remain in the current and future contribution to sea level rise from Antarctica. Climate warming may increase snowfall in the continent's interior, but enhance glacier discharge at the coast where warmer air and ocean temperatures erode the buttressing ice shelves. Here, we use satellite interferometric synthetic-aperture radar observations from 1992 to 2006 covering 85% of Antarctica's coastline to estimate the total mass flux into the ocean. We compare the mass fluxes from large drainage basin units with interior snow accumulation calculated from a regional atmospheric climate model for 1980 to 2004. In East Antarctica, small glacier losses in Wilkes Land and glacier gains at the mouths of the Filchner and Ross ice shelves combine to a near-zero loss of 4 ± 61 Gt/yr. In West Antarctica, widespread losses along the Bellingshausen and Amundsen seas increased the ice sheet loss by 59% in 10 years to reach 132 ± 60 Gt/yr in 2006. In the Peninsula, losses increased by 140% to reach 60 ± 46 Gt/yr in 2006. Losses are concentrated along narrow channels occupied by outlet glaciers and are caused by ongoing and past glacier acceleration. Changes in glacier flow therefore have a significant, if not dominant impact on ice sheet mass balance.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...