ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Boulder : The Geological Society of America
    Associated volumes
    Call number: S 90.0095(158)
    In: Special paper
    Type of Medium: Series available for loan
    Pages: 82 S.
    ISBN: 081372158X
    Series Statement: Special paper / Geological Society of America 158
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Mineral assemblages in the Dinggyê area of southern Tibet (28°N; 88°E) provide new insights regarding the poorly understood “Eohimalayan” metamorphic event in the eastern Himalayan orogen. Major element partitioning thermobarometry of pelitic rocks indicates temperatures of 750–830 K at depths of 14±3 km, consistent with the presence of kyanite, sillimanite, and andalusite schists in the area. Laser and resistance furnace40Ar/39Ar analyses of hornblendes from intercalated amphibolites yield closure ages of 25 Ma. Overlap between the probable range of Ar closure temperatures for these hornblendes and the metamorphic temperatures estimated through thermobarometry suggests that Eohimalayan metamorphism in the Dinggyê area occurred in Late Oligocene time, no more than about 10 million years before the main or “Neohimalayan” phase of metamorphism in Early to Middle Miocene time. Muscovite, biotite, and K-feldspar40Ar/39Ar ages indicate an important episode of rapid cooling between 16 and 13 Ma, which is interpreted as a signature of tectonic denudation related to movement on N-dipping extensional structures of the South Tibetan detachment system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 260 (1976), S. 693-694 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Tectonic analogies between the modern central Andes and the US Cordillera of Mesozoic and earliest Tertiary age have been discussed by Hamilton5,6, James7, and others. The Andes, a chain characterised by voluminous magmatic activity, are bounded on the west by the Peru?Chile trench, a zone of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 295 (1982), S. 464-464 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Geology of the Continental Margins. By G. Boillot. Pp.115. ISBN 0-582-30036-3. (Longman: 1981.) £4.95, $11.95. Geotectonics. By V.V. Beloussov. Pp.330. ISBN 0-387-09173-4. (Springer-Verlag: 1980.) DM48, $28.40. Tectonics and Landforms. By Cliff Oilier. Pp.324. Hbk ISBN ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Geological relationships and geochronological data suggest that in Miocene time the metamorphic core of the central Himalayan orogen was a wedge-shaped body bounded below by the N-dipping Main Central thrust system and above the N-dipping South Tibetan detachment system. We infer that synchronous movement on these fault systems expelled the metamorphic core southward toward the Indian foreland, thereby moderating the extreme topographic gradient at the southern margin of the Tibetan Plateau. Reaction textures, thermobarometric data and thermodynamic modelling of pelitic schists and gneisses from the Nyalam transect in southern Tibet (28°N, 86°E) imply that gravitational collapse of the orogen produced a complex thermal structure in the metamorphic core. Amphibolite facies metamorphism and anatexis at temperatures of 950 K and depths of at least 30 km accompanied the early stages of displacement on the Main Central thrust system. Our findings suggest that the late metamorphic history of these rocks was characterized by high-T decompression associated with roughly 15 km of unroofing by movement on the South Tibetan detachment system. In the middle of the metamorphic core, roughly 7–8 km below the basal detachment of the South Tibetan system, the decompression was essentially isothermal. Near the base of the metamorphic core, roughly 4–6 km above the Main Central thrust, the decompression was accompanied by about 150 K of cooling. We attribute the disparity between the P–T paths of these two structural levels to cooling of the lower part of the metamorphic core as a consequence of continued (and probably accelerated) underthrusting of cooler rocks in the footwall of the Main Central thrust at the same time as movement on the South Tibetan detachment system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Shallow and intermediate depth earthquakes and crustal movements in the Andes Mountains of Peru are discussed. Epicenters of major seismic events are shown on charts. Microearthquakes are mapped on a chart.
    Keywords: GEOPHYSICS
    Type: NASA-CR-169362 , NAS 1.26:169362
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The long-period P waveforms observed for 17 earthquakes in the Peruvian Andes during 1963-1976 are compared with synthetic waveforms to obtain fault-plane solutions and focal depths. The morphological units of the Peruvian Andes are characterized: coastal plains, Cordillera Occidental, altiplano and central high plateau, Cordillera Oriental, and sub-Andes. The data base and analysis methodology are discussed, and the results are presented in tables, diagrams, graphs, maps, and photographs illustrating typical formations. Most of the earthquakes are shown to occur in the transition zone from the sub-Andes to the Cordillera Oriental under formations of about 1 km elevation at focal depths of 10-38 km. It is suggested that the sub-Andean earthquakes reflect hinterland deformation of a detached fold and thrust belt, perhaps like that which occurred in parts of the Canadian Rockies. From the total crustal shortening evident in Andean morphology and the shortening rate of the recent earthquakes it is estimated that the topography and crustal root of the Andes have been formed during the last 90-135 Myr.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 88; 10403-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-31
    Description: The generally east-west–trending Balkan orogen (eastern Europe) consists of a northern belt of folded and thrusted Mesozoic and Cenozoic strata that forms the external fold-thrust belt of late Mesozoic and early Cenozoic age, and a southern belt that consists of deformed igneous and metamorphic rocks overprinted by Cenozoic extensional basins. Unlike most foreland fold-thrust belts, wherein deformation commonly migrates toward the foreland, the fold-thrust belt within the Balkan orogen is marginal to the Moesian Platform to the north, but was deformed in at least three events related to three different dynamic systems caused by changes in plate interactions. The earliest event of late-Early to early-Late Cretaceous deformed strata deposited within the Moesian continental margin and within a continental rifted belt containing deep-water flysch of Late Jurassic–Early Cretaceous age, a probable eastward extension of oceanic troughs from the Southern Carpathians. The shortening was a consequence of south or southwest synthetic subduction within the Vardar zone along the southern margin of the Balkan orogen. In Late Cretaceous time a backarc and/or intraarc rift zone developed along the southern margin of the fold belt, terminating shortening. The backarc and/or intraarc basin closed in Late Cretaceous–early Paleocene time, deforming the fold-thrust belt for a second time, but antithetically to north or northeast subduction in the Vardar zone. North- and northwest-vergent subduction within the Vardar zone caused magmatism, metamorphism, and deformation within the Rhodope area of southern Bulgaria south of the foreland thrust belt. In Paleogene time the southern part of the Balkan orogen became extensional with development of extensional basins and abundant magmatism due to trench rollback. The time of the final foreland fold-thrust belt deformation was late Eocene extending into Oligocene or early Miocene, contemporaneous with the extension to the south. The deformation within the fold-thrust belt was caused by a transfer of transpressional right shear within north Bulgaria and the Southern Carpathians as crustal units were translated northward west of the Moesian foreland crust and moved northeast and eastward into the eastern Carpathian west-dipping subduction zone. During the third event of deformation crustal units were molded around the Moesian foreland crust. The shortening ceased by early Miocene time and the right shear west of Moesian foreland crust was manifested by discrete right-slip faults to the present. During this third event southern Bulgaria was in an extensional regime that dominated the south- to southwest-vergent Hellenide orogen throughout the Cenozoic, thus dividing the Balkan orogen into two different deformational regions.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1977-01-01
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-03-01
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...