ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. J. Int., Wiesbaden, Bundesanstalt f. Geowissenschaften und Rohstoffe (BGR) und die Staatlichen Geologischen Dienste in der Bundesrepublik Deutschland, Vertrieb: E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, vol. 137, no. 3, pp. 585-600, pp. 1006, (ISSN: 1340-4202)
    Publication Date: 1999
    Keywords: Seismology ; Source ; Aftershocks ; Earthquake ; Location ; Inversion ; Moment tensor ; Nabelek ; GJI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Earth planet. Sci. Lett., Wiesbaden, Bundesanstalt f. Geowissenschaften und Rohstoffe (BGR) und die Staatlichen Geologischen Dienste in der Bundesrepublik Deutschland, Vertrieb: E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, vol. 215, no. 1-2, pp. 105-119, pp. 1006, (ISSN: 1340-4202)
    Publication Date: 2003
    Keywords: Tomography ; Attenuation ; Quality factor ; Subduction zone ; Fluids ; Volcanology ; South ; America ; Chile ; EPSL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000
    Keywords: Subduction zone ; Plate tectonics ; Seismology ; ConvolutionR ; Receiver functions ; FLORENZO
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-15
    Description: On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of 〉8.5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schurr, Bernd -- Asch, Gunter -- Hainzl, Sebastian -- Bedford, Jonathan -- Hoechner, Andreas -- Palo, Mauro -- Wang, Rongjiang -- Moreno, Marcos -- Bartsch, Mitja -- Zhang, Yong -- Oncken, Onno -- Tilmann, Frederik -- Dahm, Torsten -- Victor, Pia -- Barrientos, Sergio -- Vilotte, Jean-Pierre -- England -- Nature. 2014 Aug 21;512(7514):299-302. doi: 10.1038/nature13681. Epub 2014 Aug 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉GFZ Helmholtz Centre Potsdam, German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany. ; School of Earth and Space Sciences, Peking University, Beijing 100871, China. ; Centro Sismologico National, Universidad de Chile, Facultad de Ciencias Fisicas y Matematicas, Blanco Encalada 2002, Santiago, Chile. ; Institut de Physique du Globe de Paris, 1, rue Jussieu, 75238 Paris cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119049" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract The aftershock productivity is known to strongly vary for different mainshocks of the same magnitude, which cannot be simply explained by random fluctuations. In addition to variable source mechanisms, different rheological properties might be responsible for the observed variations. Here we show, for the subduction zone of northern Chile, that the aftershock productivity is linearly related to the degree of mechanical coupling along the subduction interface. Using the earthquake catalog of Sippl et al. (2018, https://doi.org/10.1002/2017JB015384), which consists of more than 100,000 events between 2007 and 2014, and three different coupling maps inferred from interseismic geodetic deformation data, we show that the observed aftershock numbers are significantly lower than expected from the Båth's law. Furthermore, the productivity decays systematically with depth in the uppermost 80 km, while the b value increases. We show that this lack of aftershocks and the observed depth dependence can be simply explained by a linear relationship between the productivity and the coupling coefficient, leading to Båth law only in the case of full coupling. Our results indicate that coupling maps might be useful to forecast aftershock productivity and vice versa.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P and S receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio (〈1.70), suggesting a dominantly felsic composition, probably a result of delamination/foundering of the mafic rocks of the lower crust. Beneath the Cenozoic gneiss domes of the Central and South Pamir, which represent extensional core complexes, the Vp/Vs ratios are moderate to high (~1.75), consistent with the previously observed, midcrustal low‐velocity zones, implying the presence of crustal partial melts. Even higher crustal average Vp/Vs ratios up to 1.90 are found in the sedimentary basins and along the Main Pamir Thrust. The ratios along the latter—the active thrust front of the Pamir—may reflect fluid accumulations within a strongly fractured fault system.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract We used data from 〉100 permanent and temporary seismic stations to investigate seismicity patterns related to the 1 April 2014 M8.1 Iquique earthquake in northern Chile. Applying a multistage automatic event location procedure to the seismic data, we detected and located ~19,000 foreshocks, aftershocks and background seismicity for one month preceding and nine month following the mainshock. Foreshocks skirt around the updip limit of the mainshock asperity; aftershocks occur mainly in two belts updip and downdip of it. The updip seismicity primarily locates in a zone of transitional friction on the megathrust and can be explained by preseismic stress loading due to slow‐slip processes and afterslip driven by increased Coulomb failure stress (CFS) due to the mainshock and its largest aftershock. Afterslip further south also triggered aftershocks and repeating earthquakes in several EW striking streaks. We interpret the streaks as markers of surrounding creep that could indicate a change in fault mechanics and may have structural origin, caused by fluid‐induced failure along presumed megathrust corrugations. Megathrust aftershocks terminate updip below the seaward frontal prism in the outer continental wedge that probably behaves aseismically under velocity‐strengthening conditions. The inner wedge locates further landward overlying the megathrust's seismogenic zone. Further downdip, aftershocks anticorrelate with the two major afterslip patches resolved geodetically and partially correlate with increased CFS, overall indicating heterogeneous frictional behavior. A region of sparse seismicity at ~40‐50 km depth is followed by the deepest plate interface aftershocks at ~55‐65 km depth, which occur in two clusters of significantly different dip.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-26
    Description: [1]  We present new seismicity images based on a two-year seismic deployment in the Pamir and SW Tien Shan. 9,532 earthquakes were detected, located and rigorously assessed in a multistage automatic procedure utilizing state-of-the-art picking algorithms, waveform cross-correlation and multi-event relocation. The obtained catalog provides new information on crustal seismicity and reveals the geometry and internal structure of the Pamir-Hindu Kush intermediate-depth seismic zone with improved detail and resolution. The relocated seismicity clearly defines at least two distinct planes, one beneath the Pamir, the other beneath the Hindu Kush, separated by a gap across which strike and dip directions change abruptly. The Pamir seismic zone forms a thin (ca.10 km width), curviplanar arc that strikes east–west and dips south at its eastern end, then progressively turns by 90 degrees to reach a north–south strike and a due eastward dip at its southwestern termination. Pamir deep seismicity outlines several streaks at depths between 70 and 240 km, with the deepest events occurring at its southwestern end. Intermediate-depth earthquakes are clearly separated from shallow crustal seismicity, which is confined to the uppermost 20–25 km. The Hindu Kush seismic zone extends from 40 to 250 km depth and generally strikes east–west, yet bends northeast, towards the Pamir, at its eastern end. It may be divided vertically into an upper and lower part separated by a gap at approx. 150 km depth. In the upper part, events form a plane that is 15–25 km thick in cross-section and dips sub-vertically north to northwest. Seismic activity is more virile in the lower part, where several distinct clusters form a complex pattern of sub-parallel planes. The observed geometry could be reconciled either with a model of two-sided subduction of Eurasian and previously underthrusted Indian continental lithosphere or by a purely Eurasian origin of both Pamir and Hindu Kush seismic zones, which necessitatesa contortion and oversteepening of the latter.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-29
    Description: SUMMARY Utilizing seismic refraction/wide-angle reflection data from 11 approximately in-line earthquakes, 2-D P- and S -velocity models and a Poisson's ratio model of the crust and uppermost mantle beneath the southern Tien Shan and the Pamir have been derived along the 400-km long main profile of the TIPAGE (TIen shan—PAmir GEodynamic program) project. These models show that the crustal thickness varies from about 65.5 km close to the southern end of the profile beneath the South Pamir through about 73.6 km under Lake Karakul in the North Pamir, to about 57.7 km, 50 km south of the northern end of the profile in the southern Tien Shan. Average crustal P velocities are low with respect to the global average, varying from 6.26 to 6.30 km s −1 . The average crustal S velocity varies from 3.54 to 3.70 km s −1 along the profile and thus average crustal Poisson's ratio (σ) varies from 0.23 beneath the central Pamir in the south central part of the profile to 0.265 towards the northern end of the profile beneath the southern Tien Shan. The main layer of the upper crust extending from about 2 km below the Earth's surface to 27 km depth below sea level (b.s.l.) has average P velocities of about 6.05–6.1 km s −1 , except beneath the south central part of the profile where they decrease to around 5.95 km s −1 . This is in contrast to the S velocities which range from 3.4 to 3.6 km s −1 and exhibit the highest values of 3.55–3.6 km s −1 where the P velocity is lowest. Thus, σ for the main layer of the upper crust is 0.26 beneath the profile except beneath the south central part of the profile where it decreases to 0.22. The low value of 0.22 for σ under the central Pamir, the along-strike equivalent of the Qiangtang terrane in Tibet, is similar to that within the corresponding layer beneath the northern Lhasa and southern Qiangtang terranes in central Tibet and is indicative of felsic rocks rich in quartz in the α state. The lower crust below 27 km b.s.l. has P velocities ranging from 6.1 km s −1 at the top to 7.1 km s −1 at the base. Further, σ for this layer is 0.27–0.28 towards the northern end of the profile but is low at about 0.24 beneath the central and southern parts of the profile, which is similar to the situation found in the northeast Tibetan plateau. The low values can be explained by felsic schists and gneisses in the upper part of the lower crust transitioning to granulite-facies and possibly also eclogite-facies metapelites in the lower part. Within the uppermost mantle, the average P velocity is about 8.10–8.15 km s −1 and σ is about 0.26. Assuming an isotropic situation, then a relatively cool (700–800°C) uppermost mantle beneath the profile is indicated. This would in turn indicate an intact mantle lid beneath the profile. An upper mantle reflector dipping from 104 km b.s.l., 120 km from the southern end of the profile to 86 km b.s.l., 155 km from the northern end of the profile has also been identified. The preferred model presented here for the crustal and lithospheric mantle structure beneath the Pamir calls for nearly horizontal underthrusting of relatively cool Indian mantle lithosphere, the leading edge of which is outlined by the Pamir seismic zone. This cool Indian mantle lithosphere is overlain by significantly shortening, warm Asian crust. The Moho trough that is a feature seen beneath some other orogenic belts, for example the Alps and the Urals, beneath the northern Pamir may mark the southern tip of the actively underthrusting Tien Shan crust along the Main Pamir thrust.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-16
    Description: In 2007 a M7.7 earthquake occurred near the town of Tocopilla within the northern Chile seismic gap. Main shock slip, derived from coseismic surface deformation, was confined to the depth range between 30 and 55 km. We relocated ∼1100 events during six months before and one week after the main shock. Aftershock seismicity is first congruent to the main shock slip and then it spreads offshore west and northwest of Mejillones Peninsula (MP). Waveform modeling for 38 aftershocks reveals source mechanisms that are in the majority similar to the main shock. However, a few events appear to occur in the upper plate, some with extensional mechanisms. Juxtaposing the Tocopilla aftershocks with those following the neighboring 1995 Antofagasta earthquake produces a striking symmetry across an EW axis in the center of MP. Events seem to skirt around MP, probably due to a shallower Moho there. We suggest that the seismogenic coupling zone in northern Chile changes its frictional behavior in the downdip direction from unstable to mostly conditionally stable. For both earthquake sequences, aftershocks agglomerate in the conditionally stable region, whereas maximum inter-seismic slip deficit and co-seismic slip occurs in the unstable region. The boundary between the unstable and conditionally stable zones parallels the coastline. We identify a similar segmentation for other earthquakes in Chile and Peru, where the offshore segments break in great M 〉 8 earthquakes, and the onshore segments in smaller M 〈 8 earthquakes. Using critical taper analysis, we demonstrate a causal relationship between varying slip behavior on the interface and forearc wedge anatomy that can be attributed to spatial variations in the rate-dependency of friction.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...