ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Integrated analysis methods have the potential to substantially decrease the time required for analysis modeling. Integration with computer aided design (CAD) software can also allow a model to be more accurate by facilitating import of exact design geometry. However, the integrated method utilized must sometimes be tailored to the specific modeling situation, in order to make the process most efficient. Two cases are presented here that illustrate different processes used for thermal analysis on two different models. These examples are used to illustrate how the requirements, available input, expected output, and tools available all affect the process selected by the analyst for the most efficient and effective analysis.
    Keywords: Computer Programming and Software
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 37-48; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-07
    Description: Several improvements have recently been made in the thermal analysis methods for leading edges of a hypersonic vehicle. The leading edges of this vehicle undergo exceptionally high heat loads that incorporate extreme spatial gradients as well as severe transients. Due to the varying flight conditions, complex geometry, and need for thermal loads at many points along the trajectory, full computational fluid dynamics (CFD) analysis of the aeroheating; loads is not feasible. Thus, engineering methods must be used to determine the aeroheating on the vehicle surfaces, and that must be utilized in the thermal analysis. Over the last year, the thermal analysis of a hypersonic vehicle has been enhanced in several ways. Two different engineering codes are used to predict aeroheating loads: one over the curve near the stagnation point, and the other on flat surfaces downstream of the leading edge. These two are matched together at the intersection point using a method that allows closer approximation of CFD results. User-developed FORTRAN, which is part of the thermal solver PATRAN Thermal, is used to accomplish this. The customizable FORTRAN code also allows use of many different time- and space-dependent factors, interpolation of the heat load in time and space, and inclusion of both highly swept and unswept grid structures. This FORTRAN is available to other PATRAN users who may want to accomplish a similar objective in analysis. Flux, rather than convective coefficient, is used to define heat loads, which allows more accurate analysis as well as better application of margins. Improvements have also been made in more efficient utilization of imported CAD geometry, by creating faces on solids to facilitate load application.
    Keywords: Aerodynamics
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Several innovative methods were used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry 'by hand.' This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models was elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA. Lewis Research Center, The Fifth Annual Thermal and Fluids Analysis Workshop; p 169-184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The proposed Hydrostar mission used a large orbiting antenna array to demonstrate synthetic aperture technology in space while obtaining global soil moisture data. In order to produce accurate data, the array was required to remain as close as possible to its perfectly aligned placement while undergoing the mechanical and thermal stresses induced by orbital changes. Thermal and structural analyses for a design concept of this antenna array were performed. The thermal analysis included orbital radiation calculations, as well as parametric studies of orbit altitude, material properties and coating types. The thermal results included predicted thermal distributions over the array for several cases. The structural analysis provided thermally-driven deflections based on these cases, as well as based on a 1-g inertial load. In order to minimize the deflections of the array in orbit, the use of XN70, a carbon-reinforced polycyanate composite, was recommended.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-1998-206288 , NAS 1.15:206288 , L-17679
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: Mars missions often employ aerobraking upon arrival at Mars as a low-mass method to gradually reduce the orbit period from a high-altitude, highly elliptical insertion orbit to the final science orbit. Two recent missions that made use of aerobraking were Mars Global Surveyor (MGS) and Mars Odyssey. Both spacecraft had solar arrays as the main aerobraking surface area. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis must be tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. To properly represent the temperatures prior to and during the drag pass, the model must include the orbital solar and planetary heat fluxes. The correlation of the thermal model to flight data allows a validation of the modeling process, as well as information on what processes dominate the thermal behavior. This paper describes the thermal modeling method that was developed for this purpose, as well as correlation for two flight missions, and a discussion of improvements to the methodology.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-29
    Description: In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA, Washington, Technology 2002: The Third National Technology Transfer Conference and Exposition, Volume 1; p 376-384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-104117 , NAS 1.15:104117
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Thermal analysis of a vehicle designed to return samples from another planet, such as the Earth Entry vehicle for the Mars Sample Return mission, presents several unique challenges. The Earth Entry Vehicle (EEV) must contain Martian material samples after they have been collected and protect them from the high heating rates of entry into the Earth's atmosphere. This requirement necessitates inclusion of detailed thermal analysis early in the design of the vehicle. This paper will describe the challenges and solutions for a preliminary thermal analysis of an Earth Entry Vehicle. The aeroheating on the vehicle during entry would be the main driver for the thermal behavior, and is a complex function of time, spatial position on the vehicle, vehicle temperature, and trajectory parameters. Thus, the thermal analysis must be closely tied to the aeroheating analysis in order to make accurate predictions. Also, the thermal analysis must account for the material response of the ablative thermal protection system (TPS). For the exo-atmospheric portion of the mission, the thermal analysis must include the orbital radiation fluxes on the surfaces. The thermal behavior must also be used to predict the structural response of the vehicle (the thermal stress and strains) and whether they remain within the capability of the materials. Thus, the thermal analysis requires ties to the three-dimensional geometry, the aeroheating analysis, the material response analysis, the orbital analysis, and the structural analysis. The goal of this paper is to describe to what degree that has been achieved.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Thermal and Fluids Analysis; Aug 21, 2000 - Aug 25, 2000; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Thermal analysis of a vehicle designed to return samples from another planet, such as the Earth Entry vehicle for the Mars Sample Return mission, presents several unique challenges. The Earth Entry Vehicle (EEV) must contain Martian material samples after they have been collected and protect them from the high heating rates of entry into the Earth's atmosphere. This requirement necessitates inclusion of detailed thermal analysis early in the design of the vehicle. This paper will describe the challenges and solutions for a preliminary thermal analysis of an Earth Entry Vehicle. The aeroheatina on the vehicle during entry would be the main driver for the thermal behavior. and is a complex function of time, spatial position on the vehicle, vehicle temperature, and trajectory parameters. Thus. the thermal analysis must be closely tied to the aeroheating analysis in order to make accurate predictions. Also, the thermal analysis must account for the material response of the ablative thermal protection system TPS. For the exo-atmospheric portion of the mission, the thermal analysis must include the orbital radiation fluxes on the surfaces. The thermal behavior must also be used to predict the structural response of the vehicle (the thermal stress and strains) and whether they remain within the capability of the materials. Thus, the thermal analysis requires ties to the three-dimensional geometry, the aeroheating analysis, the material response analysis, the orbital analysis. and the structural analysis. The goal of this paper is to describe to what degree that has been achieved.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Thermal and Fluids Analysis; Aug 21, 2000 - Aug 25, 2000; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Thermal analysis of a vehicle designed to return samples from another planet, such as the Earth Entry vehicle for the Mars Sample Return mission, presents several unique challenges. The scientific purpose of a sample return mission is to return samples to Earth for detailed investigation. The Earth Entry Vehicle (EEV) must contain the samples after they have been collected and protect them from the high heating rates of entry into the Earth's atmosphere. This requirement necessitates inclusion of detailed thermal analysis early in the design of the vehicle. This paper will describe the challenges and solutions for a preliminary thermal analysis of an Earth Entry Vehicle. The primary challenges included accurate updates of model geometry, applying heat fluxes that change with position and time during exo-atmospheric cruise and entry, and incorporating orthotropic material properties. Many different scenarios were evaluated for the exoatmospheric cruise to attain the desired thermal condition. The severity of the heat pulse during entry and the material response led to some unique modeling solutions. Overall, advanced modeling techniques and mathematical solutions were successfully used in predicting the thermal behavior of this complex system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2000-2584 , Thermophysics; Jun 19, 2000 - Jun 22, 2000; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...