ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-03-01
    Print ISSN: 1671-9433
    Electronic ISSN: 1993-5048
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-10
    Description: The traditional target tracking is a process of estimating the state of a moving target using measurement information obtained by sensors. However, underwater passive acoustic target tracking will confront further challenges, among which the system incomplete observability and time delay caused by the signal propagation create a great impact on tracking performance. Passive acoustic sensors cannot accurately obtain the target range information. The introduction of Doppler frequency measurement can improve the system observability performance; signal time delay cannot be ignored in underwater environments. It varies with time, which has a continuous negative impact on the tracking accuracy. In this paper, the Gauss–Helmert model is introduced to solve this problem by expanding the unknown signal emission time as an unknown variable to the state. This model allows the existence of the previous state and current state at the same time, while handling the implicit equations. To improve the algorithm accuracy, this paper further takes advantage of the estimated state and covariance for the second stage iteration and propose the Gauss–Helmert iterated Unscented Kalman filter under a three-dimensional environment. The simulation shows that the proposed method in this paper shows superior estimation accuracy and more stable performance compared with other filtering algorithms in underwater environments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-20
    Description: A major advantage of the use of passive sonar in the tracking multiple underwater targets is that they can be kept covert, which reduces the risk of being attacked. However, the nonlinearity of the passive Doppler and bearing measurements, the range unobservability problem, and the complexity of data association between measurements and targets make the problem of underwater passive multiple target tracking challenging. To deal with these problems, the cardinalized probability hypothesis density (CPHD) recursion, which is based on Bayesian information theory, is developed to handle the data association uncertainty, and to acquire existing targets’ numbers and states (e.g., position and velocity). The key idea of the CPHD recursion is to simultaneously estimate the targets’ intensity and the probability distribution of the number of targets. The CPHD recursion is the first moment approximation of the Bayesian multiple targets filter, which avoids the data association procedure between the targets and measurements including clutter. The Bayesian-filter-based extended Kalman filter (EKF) is applied to deal with the nonlinear bearing and Doppler measurements. The experimental results show that the EKF-based CPHD recursion works well in the underwater passive multiple target tracking system in cluttered and noisy environments.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-07
    Description: In this paper, an application of spherical radial cubature Bayesian filtering and smoothing algorithms is presented to solve a typical underwater bearings only passive target tracking problem effectively. Generally, passive target tracking problems in the ocean environment are represented with the state-space model having linear system dynamics merged with nonlinear passive measurements, and the system is analyzed with nonlinear filtering algorithms. In the present scheme, an application of spherical radial cubature Bayesian filtering and smoothing is efficiently investigated for accurate state estimation of a far-field moving target in complex ocean environments. The nonlinear model of a Kalman filter based on a Spherical Radial Cubature Kalman Filter (SRCKF) and discrete-time Kalman smoother known as a Spherical Radial Cubature Rauch–Tung–Striebel (SRCRTS) smoother are applied for tracking the semi-curved and curved trajectory of a moving object. The worth of spherical radial cubature Bayesian filtering and smoothing algorithms is validated by comparing with a conventional Unscented Kalman Filter (UKF) and an Unscented Rauch–Tung–Striebel (URTS) smoother. Performance analysis of these techniques is performed for white Gaussian measured noise variations, which is a significant factor in passive target tracking, while the Bearings Only Tracking (BOT) technology is used for modeling of a passive target tracking framework. Simulations based experiments are executed for obtaining least Root Mean Square Error (RMSE) among a true and estimated position of a moving target at every time instant in Cartesian coordinates. Numerical results endorsed the validation of SRCKF and SRCRTS smoothers with better convergence and accuracy rates than that of UKF and URTS for each scenario of passive target tracking problem.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-25
    Description: Extracting useful features from ship-radiated noise can improve the performance of passive sonar. The entropy feature is an important supplement to existing technologies for ship classification. However, the existing entropy feature extraction methods for ship-radiated noise are less reliable under noisy conditions because they lack noise reduction procedures or are single-scale based. In order to simultaneously solve these problems, a new feature extraction method is proposed based on improved complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), normalized mutual information (norMI), and multiscale improved permutation entropy (MIPE). Firstly, the ICEEMDAN is utilized to obtain a group of intrinsic mode functions (IMFs) from ship-radiated noise. The noise reduction process is then conducted by identifying and eliminating the noise IMFs. Next, the norMI and MIPE of the signal-dominant IMFs are calculated, respectively; and the norMI is used to weigh the corresponding MIPE result. The multi-scale entropy feature is finally defined as the sum of the weighted MIPE results. Experimental results show that the recognition rate of the proposed method achieves 90.67% and 83%, respectively, under noise free and 5 dB conditions, which is much higher than existing entropy feature extraction algorithms. Hence, the proposed method is more reliable and suitable for feature extraction of ship-radiated noise in practice.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-29
    Description: In this study, an intelligent computing paradigm built on a nonlinear autoregressive exogenous (NARX) feedback neural network model with the strength of deep learning is presented for accurate state estimation of an underwater passive target. In underwater scenarios, real-time motion parameters of passive objects are usually extracted with nonlinear filtering techniques. In filtering algorithms, nonlinear passive measurements are associated with linear kinetics of the target, governing by state space methodology. To improve tracking accuracy, effective feature estimation and minimizing position error of dynamic passive objects, the strength of NARX based supervised learning is exploited. Dynamic artificial neural networks, which contain tapped delay lines, are suitable for predicting the future state of the underwater passive object. Neural networks-based intelligence computing is effectively applied for estimating the real-time actual state of a passive moving object, which follows a semi-curved path. Performance analysis of NARX based neural networks is evaluated for six different scenarios of standard deviation of white Gaussian measurement noise by following bearings only tracking phenomena. Root mean square error between estimated and real position of the passive target in rectangular coordinates is computed for evaluating the worth of the proposed NARX feedback neural network scheme. The Monte Carlo simulations are conducted and the results certify the capability of the intelligence computing over conventional nonlinear filtering algorithms such as spherical radial cubature Kalman filter and unscented Kalman filter for given state estimation model.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-29
    Description: In this study, an application of deep learning-based neural computing is proposed for efficient real-time state estimation of the Markov chain underwater maneuvering object. The designed intelligent strategy is exploiting the strength of nonlinear autoregressive with an exogenous input (NARX) network model, which has the capability for estimating the dynamics of the systems that follow the discrete-time Markov chain. Nonlinear Bayesian filtering techniques are often applied for underwater maneuvering state estimation applications by following state-space methodology. The robustness and precision of NARX neural network are efficiently investigated for accurate state prediction of the passive Markov chain highly maneuvering underwater target. A continuous coordinated turning trajectory of an underwater maneuvering object is modeled for analyzing the performance of the neural computing paradigm. State estimation modeling is developed in the context of bearings only tracking technology in which the efficiency of the NARX neural network is investigated for ideal and complex ocean environments. Real-time position and velocity of maneuvering object are computed for five different cases by varying standard deviations of white Gaussian measured noise. Sufficient Monte Carlo simulation results validate the competence of NARX neural computing over conventional generalized pseudo-Bayesian filtering algorithms like an interacting multiple model extended Kalman filter and an interacting multiple model unscented Kalman filter.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...