ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-16
    Description: Epigenetics is the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic phenomena have major economic and medical relevance, and several, such as imprinting and paramutation, violate Mendelian principles. Recent discoveries link the recognition of nucleic acid sequence homology to the targeting of DNA methylation, chromosome remodeling, and RNA turnover. Although epigenetic mechanisms help to protect cells from parasitic elements, this defense can complicate the genetic manipulation of plants and animals. Essential for normal development, epigenetic controls become misdirected in cancer cells and other human disease syndromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolffe, A P -- Matzke, M A -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):481-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Embryology, National Institute of Child Heath and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA. awlme@helix.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521337" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Methylation ; Evolution, Molecular ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; *Gene Silencing ; Genetic Diseases, Inborn/genetics ; Genome ; Humans ; Neoplasms/genetics ; RNA/genetics/metabolism ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-12-23
    Description: The TATA-binding protein (TBP) is believed to function as a key component of the general transcription machinery. We tested the role of TBP during the onset of embryonic transcription by antisense oligonucleotide-mediated turnover of maternal TBP messenger RNA. Embryos without detectable TBP initiated gastrulation but died before completing gastrulation. The expression of many genes transcribed by RNA polymerase II and III was reduced; however, some genes were transcribed with an efficiency identical to that of TBP-containing embryos. Using a similar antisense strategy, we found that the TBP-like factor TLF/TRF2 is essential for development past the mid-blastula stage. Because TBP and a TLF factor play complementary roles in embryonic development, our results indicate that although similar mechanistic roles exist in common, TBP and TLF function differentially to control transcription of specific genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veenstra, G J -- Weeks, D L -- Wolffe, A P -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2312-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA. VeenstrG@exchange.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Embryo, Nonmammalian/*metabolism ; *Embryonic Development ; Gastrula/metabolism ; *Gene Expression Regulation, Developmental ; Oligonucleotides, Antisense/metabolism/pharmacology ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; TATA-Box Binding Protein ; Telomeric Repeat Binding Protein 2 ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Xenopus/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-09-29
    Description: Cloning by the transplantation of somatic nuclei into unfertilized eggs requires a dramatic remodeling of chromosomal architecture. Many proteins are specifically lost from nuclei, and others are taken up from the egg cytoplasm. Recreating this exchange in vitro, we identified the chromatin-remodeling nucleosomal adenosine triphosphatase (ATPase) ISWI as a key molecule in this process. ISWI actively erases the TATA binding protein from association with the nuclear matrix. Defining the biochemistry of global nuclear remodeling may facilitate the efficiency of cloning and other dedifferentiation events that establish new stem cell lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kikyo, N -- Wade, P A -- Guschin, D -- Ge, H -- Wolffe, A P -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2360-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Embryology, Building 18T, Room 106, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009424" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Animals ; Cell Extracts ; Cell Nucleus/*metabolism ; Cytoplasm/physiology ; DNA/metabolism ; DNA Helicases/metabolism ; DNA-Binding Proteins/*metabolism ; Histones/metabolism ; Microscopy, Fluorescence ; Nuclear Matrix/metabolism ; Nuclear Proteins/*metabolism ; Nucleoplasmins ; Nucleosomes/*metabolism ; Ovum/*physiology ; Phosphoproteins/metabolism ; RNA-Binding Proteins/metabolism ; Recombinant Proteins/metabolism ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIIB ; *Transcription Factor TFIID ; Transcription Factors/*metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-23
    Description: The developmental regulation of two kinds of Xenopus 5S RNA genes (oocyte and somatic types) can be explained by differences in the stability of protein-protein and protein-DNA interactions in a transcription complex that directs transcription initiation by RNA polymerase III. Dissociation of transcription factors from oocyte 5S RNA genes during development allows them to be repressed by chromatin assembly. In the same cells, somatic 5S RNA genes remain active because their transcription complexes are stable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolffe, A P -- Brown, D D -- GM22395/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1626-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3420414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Chromatin ; DNA/physiology ; DNA Replication ; *Gene Expression Regulation ; Genes ; Oocytes/cytology/ultrastructure ; RNA, Ribosomal/*genetics ; RNA, Ribosomal, 5S/*genetics ; Transcription Factor TFIIIA ; Transcription Factor TFIIIB ; Transcription Factors/genetics ; *Transcription Factors, TFIII ; Transcription, Genetic ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolffe, A P -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):371-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602525" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Chromatin/chemistry/metabolism ; DNA/metabolism ; Fungal Proteins/genetics/metabolism ; *Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; Histones/*metabolism ; Humans ; Models, Genetic ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-10-25
    Description: Histone-DNA contacts within a nucleosome influence the function of trans-acting factors and the molecular machines required to activate the transcription process. The internal architecture of a positioned nucleosome has now been probed with the use of photoactivatable cross-linking reagents to determine the placement of histones along the DNA molecule. A model for the nucleosome is proposed in which the winged-helix domain of the linker histone is asymmetrically located inside the gyres of DNA that also wrap around the core histones. This domain extends the path of the protein superhelix to one side of the core particle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pruss, D -- Bartholomew, B -- Persinger, J -- Hayes, J -- Arents, G -- Moudrianakis, E N -- Wolffe, A P -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2710, USA. awlme@helix.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cross-Linking Reagents ; DNA/*chemistry/metabolism ; Histones/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleosomes/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; RNA, Ribosomal/genetics ; Recombinant Proteins/chemistry ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolffe, A P -- New York, N.Y. -- Science. 1994 May 20;264(5162):1100-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178167" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; High Mobility Group Proteins/chemistry ; Histones/chemistry/metabolism ; *Nucleic Acid Conformation ; Nucleosomes ; *Pol1 Transcription Initiation Complex Proteins ; Transcription Factors/chemistry/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...