ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Print ISSN: 1087-0156
    Electronic ISSN: 1546-1696
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-08
    Description: Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154057/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154057/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerstein, Mark B -- Kundaje, Anshul -- Hariharan, Manoj -- Landt, Stephen G -- Yan, Koon-Kiu -- Cheng, Chao -- Mu, Xinmeng Jasmine -- Khurana, Ekta -- Rozowsky, Joel -- Alexander, Roger -- Min, Renqiang -- Alves, Pedro -- Abyzov, Alexej -- Addleman, Nick -- Bhardwaj, Nitin -- Boyle, Alan P -- Cayting, Philip -- Charos, Alexandra -- Chen, David Z -- Cheng, Yong -- Clarke, Declan -- Eastman, Catharine -- Euskirchen, Ghia -- Frietze, Seth -- Fu, Yao -- Gertz, Jason -- Grubert, Fabian -- Harmanci, Arif -- Jain, Preti -- Kasowski, Maya -- Lacroute, Phil -- Leng, Jing -- Lian, Jin -- Monahan, Hannah -- O'Geen, Henriette -- Ouyang, Zhengqing -- Partridge, E Christopher -- Patacsil, Dorrelyn -- Pauli, Florencia -- Raha, Debasish -- Ramirez, Lucia -- Reddy, Timothy E -- Reed, Brian -- Shi, Minyi -- Slifer, Teri -- Wang, Jing -- Wu, Linfeng -- Yang, Xinqiong -- Yip, Kevin Y -- Zilberman-Schapira, Gili -- Batzoglou, Serafim -- Sidow, Arend -- Farnham, Peggy J -- Myers, Richard M -- Weissman, Sherman M -- Snyder, Michael -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32GM008283-24/GM/NIGMS NIH HHS/ -- U01 HG004695/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):91-100. doi: 10.1038/nature11245.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA. mark.gerstein@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955619" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; DNA/*genetics ; *Encyclopedias as Topic ; GATA1 Transcription Factor/metabolism ; Gene Expression Profiling ; Gene Regulatory Networks/*genetics ; Genome, Human/*genetics ; Genomics ; Humans ; K562 Cells ; *Molecular Sequence Annotation ; Organ Specificity ; Phosphorylation/genetics ; Polymorphism, Single Nucleotide/genetics ; Protein Interaction Maps ; RNA, Untranslated/genetics/metabolism ; Regulatory Sequences, Nucleic Acid/*genetics ; Selection, Genetic/genetics ; Transcription Factors/*metabolism ; Transcription Initiation Site
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-21
    Description: The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266106/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266106/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yue, Feng -- Cheng, Yong -- Breschi, Alessandra -- Vierstra, Jeff -- Wu, Weisheng -- Ryba, Tyrone -- Sandstrom, Richard -- Ma, Zhihai -- Davis, Carrie -- Pope, Benjamin D -- Shen, Yin -- Pervouchine, Dmitri D -- Djebali, Sarah -- Thurman, Robert E -- Kaul, Rajinder -- Rynes, Eric -- Kirilusha, Anthony -- Marinov, Georgi K -- Williams, Brian A -- Trout, Diane -- Amrhein, Henry -- Fisher-Aylor, Katherine -- Antoshechkin, Igor -- DeSalvo, Gilberto -- See, Lei-Hoon -- Fastuca, Meagan -- Drenkow, Jorg -- Zaleski, Chris -- Dobin, Alex -- Prieto, Pablo -- Lagarde, Julien -- Bussotti, Giovanni -- Tanzer, Andrea -- Denas, Olgert -- Li, Kanwei -- Bender, M A -- Zhang, Miaohua -- Byron, Rachel -- Groudine, Mark T -- McCleary, David -- Pham, Long -- Ye, Zhen -- Kuan, Samantha -- Edsall, Lee -- Wu, Yi-Chieh -- Rasmussen, Matthew D -- Bansal, Mukul S -- Kellis, Manolis -- Keller, Cheryl A -- Morrissey, Christapher S -- Mishra, Tejaswini -- Jain, Deepti -- Dogan, Nergiz -- Harris, Robert S -- Cayting, Philip -- Kawli, Trupti -- Boyle, Alan P -- Euskirchen, Ghia -- Kundaje, Anshul -- Lin, Shin -- Lin, Yiing -- Jansen, Camden -- Malladi, Venkat S -- Cline, Melissa S -- Erickson, Drew T -- Kirkup, Vanessa M -- Learned, Katrina -- Sloan, Cricket A -- Rosenbloom, Kate R -- Lacerda de Sousa, Beatriz -- Beal, Kathryn -- Pignatelli, Miguel -- Flicek, Paul -- Lian, Jin -- Kahveci, Tamer -- Lee, Dongwon -- Kent, W James -- Ramalho Santos, Miguel -- Herrero, Javier -- Notredame, Cedric -- Johnson, Audra -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Canfield, Theresa -- Sabo, Peter J -- Wilken, Matthew S -- Reh, Thomas A -- Giste, Erika -- Shafer, Anthony -- Kutyavin, Tanya -- Haugen, Eric -- Dunn, Douglas -- Reynolds, Alex P -- Neph, Shane -- Humbert, Richard -- Hansen, R Scott -- De Bruijn, Marella -- Selleri, Licia -- Rudensky, Alexander -- Josefowicz, Steven -- Samstein, Robert -- Eichler, Evan E -- Orkin, Stuart H -- Levasseur, Dana -- Papayannopoulou, Thalia -- Chang, Kai-Hsin -- Skoultchi, Arthur -- Gosh, Srikanta -- Disteche, Christine -- Treuting, Piper -- Wang, Yanli -- Weiss, Mitchell J -- Blobel, Gerd A -- Cao, Xiaoyi -- Zhong, Sheng -- Wang, Ting -- Good, Peter J -- Lowdon, Rebecca F -- Adams, Leslie B -- Zhou, Xiao-Qiao -- Pazin, Michael J -- Feingold, Elise A -- Wold, Barbara -- Taylor, James -- Mortazavi, Ali -- Weissman, Sherman M -- Stamatoyannopoulos, John A -- Snyder, Michael P -- Guigo, Roderic -- Gingeras, Thomas R -- Gilbert, David M -- Hardison, Ross C -- Beer, Michael A -- Ren, Bing -- Mouse ENCODE Consortium -- 095908/Wellcome Trust/United Kingdom -- 1U54HG007004/HG/NHGRI NIH HHS/ -- 3RC2HG005602/HG/NHGRI NIH HHS/ -- F31CA165863/CA/NCI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- GM083337/GM/NIGMS NIH HHS/ -- GM085354/GM/NIGMS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 GM085354/GM/NIGMS NIH HHS/ -- P01 HL064190/HL/NHLBI NIH HHS/ -- P01 HL110860/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 DK065806/DK/NIDDK NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 GM083337/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007348/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01DK065806/DK/NIDDK NIH HHS/ -- R01HD043997-09/HD/NICHD NIH HHS/ -- R01HG003991/HG/NHGRI NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R56 DK065806/DK/NIDDK NIH HHS/ -- RC2 HG005573/HG/NHGRI NIH HHS/ -- RC2HG005573/HG/NHGRI NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 HL099656/HL/NHLBI NIH HHS/ -- U01 HL099993/HL/NHLBI NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- U54 HG006998/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 20;515(7527):355-64. doi: 10.1038/nature13992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA. ; Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA. ; Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA. ; Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Division of Biology, California Institute of Technology, Pasadena, California 91125, USA. ; 1] Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain. [2] Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 17/3/303, A-1090 Vienna, Austria. ; Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA. ; 1] Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [2] Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA. ; Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA. ; Departments of Obstetrics/Gynecology and Pathology, and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Yale University, Department of Genetics, PO Box 208005, 333 Cedar Street, New Haven, Connecticut 06520-8005, USA. ; Computer &Information Sciences &Engineering, University of Florida, Gainesville, Florida 32611, USA. ; McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, BRB 573 Baltimore, Maryland 21205, USA. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK. ; Department of Biological Structure, University of Washington, HSB I-516, 1959 NE Pacific Street, Seattle, Washington 98195, USA. ; MRC Molecular Haemotology Unit, University of Oxford, Oxford OX3 9DS, UK. ; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA. ; HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA. ; Dana Farber Cancer Institute, Harvard Medical School, Cambridge, Massachusetts 02138, USA. ; University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, Iowa 52242, USA. ; Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA. ; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA. ; Department of Pathology, University of Washington, Seattle, Washington 98195, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA. ; Bioinformatics and Genomics program, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. [2] Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA. ; NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409824" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/genetics ; Chromatin/genetics/metabolism ; Conserved Sequence/genetics ; DNA Replication/genetics ; Deoxyribonuclease I/metabolism ; Gene Expression Regulation/genetics ; Gene Regulatory Networks/genetics ; Genome/*genetics ; Genome-Wide Association Study ; *Genomics ; Humans ; Mice/*genetics ; *Molecular Sequence Annotation ; RNA/genetics ; Regulatory Sequences, Nucleic Acid/genetics ; Species Specificity ; Transcription Factors/metabolism ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-20
    Description: Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-beta plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gjoneska, Elizabeta -- Pfenning, Andreas R -- Mathys, Hansruedi -- Quon, Gerald -- Kundaje, Anshul -- Tsai, Li-Huei -- Kellis, Manolis -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 NS078839/NS/NINDS NIH HHS/ -- R01HG004037-07/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1 HG005334/HG/NHGRI NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):365-9. doi: 10.1038/nature14252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693568" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics/*immunology/physiopathology ; Animals ; Chromatin/genetics/metabolism ; Conserved Sequence ; Disease Models, Animal ; Down-Regulation/genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Female ; Genetic Predisposition to Disease/genetics ; Genome-Wide Association Study ; Hippocampus/metabolism ; Humans ; Immunity/genetics ; Memory/physiology ; Mice ; *Models, Biological ; Neuronal Plasticity/genetics ; Polymorphism, Single Nucleotide/genetics ; Proto-Oncogene Proteins/metabolism ; Trans-Activators/metabolism ; Transcription, Genetic/genetics ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-19
    Description: The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasowski, Maya -- Kyriazopoulou-Panagiotopoulou, Sofia -- Grubert, Fabian -- Zaugg, Judith B -- Kundaje, Anshul -- Liu, Yuling -- Boyle, Alan P -- Zhang, Qiangfeng Cliff -- Zakharia, Fouad -- Spacek, Damek V -- Li, Jingjing -- Xie, Dan -- Olarerin-George, Anthony -- Steinmetz, Lars M -- Hogenesch, John B -- Kellis, Manolis -- Batzoglou, Serafim -- Snyder, Michael -- R01 HG004037/HG/NHGRI NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32GM07205/GM/NIGMS NIH HHS/ -- U01 HL107393/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):750-2. doi: 10.1126/science.1242510. Epub 2013 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136358" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/genetics/metabolism ; Cell Line, Tumor ; Chromatin/*genetics/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; Enhancer Elements, Genetic/genetics ; *Gene Expression Regulation ; Genetic Predisposition to Disease/*genetics ; Genetic Variation ; Histones/genetics/metabolism ; Humans ; Repressor Proteins/genetics/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-30
    Description: With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-20
    Description: We agree with Brunet and Doolittle (1) on the utility of distinguishing the evolutionarily selected effects (SE) of some genomic elements from the causal roles (CR) of other elements that lack signatures of selection (1–4). DNA sequences identified by biochemical approaches include both SE and CR elements, and genetic variation...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-11
    Description: Transcription of mitochondrial DNA (mtDNA)-encoded genes is thought to be regulated by a handful of dedicated transcription factors (TFs), suggesting that mtDNA genes are separately regulated from the nucleus. However, several TFs, with known nuclear activities, were found to bind mtDNA and regulate mitochondrial transcription. Additionally, mtDNA transcriptional regulatory elements, which were proved important in vitro, were harbored by a deletion that normally segregated among healthy individuals. Hence, mtDNA transcriptional regulation is more complex than once thought. Here, by analyzing ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified strong binding sites of three bona fide nuclear TFs (c-Jun, Jun-D, and CEBPb) within human mtDNA protein-coding genes. We validated the binding of two TFs by ChIP-quantitative polymerase chain reaction (c-Jun and Jun-D) and showed their mitochondrial localization by electron microscopy and subcellular fractionation. As a step toward investigating the functionality of these TF-binding sites (TFBS), we assessed signatures of selection. By analyzing 9,868 human mtDNA sequences encompassing all major global populations, we recorded genetic variants in tips and nodes of mtDNA phylogeny within the TFBS. We next calculated the effects of variants on binding motif prediction scores. Finally, the mtDNA variation pattern in predicted TFBS, occurring within ChIP-seq negative-binding sites, was compared with ChIP-seq positive-TFBS (CPR). Motifs within CPRs of c-Jun, Jun-D, and CEBPb harbored either only tip variants or their nodal variants retained high motif prediction scores. This reflects negative selection within mtDNA CPRs, thus supporting their functionality. Hence, human mtDNA-coding sequences may have dual roles, namely coding for genes yet possibly also possessing regulatory potential.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-20
    Description: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roadmap Epigenomics Consortium -- Kundaje, Anshul -- Meuleman, Wouter -- Ernst, Jason -- Bilenky, Misha -- Yen, Angela -- Heravi-Moussavi, Alireza -- Kheradpour, Pouya -- Zhang, Zhizhuo -- Wang, Jianrong -- Ziller, Michael J -- Amin, Viren -- Whitaker, John W -- Schultz, Matthew D -- Ward, Lucas D -- Sarkar, Abhishek -- Quon, Gerald -- Sandstrom, Richard S -- Eaton, Matthew L -- Wu, Yi-Chieh -- Pfenning, Andreas R -- Wang, Xinchen -- Claussnitzer, Melina -- Liu, Yaping -- Coarfa, Cristian -- Harris, R Alan -- Shoresh, Noam -- Epstein, Charles B -- Gjoneska, Elizabeta -- Leung, Danny -- Xie, Wei -- Hawkins, R David -- Lister, Ryan -- Hong, Chibo -- Gascard, Philippe -- Mungall, Andrew J -- Moore, Richard -- Chuah, Eric -- Tam, Angela -- Canfield, Theresa K -- Hansen, R Scott -- Kaul, Rajinder -- Sabo, Peter J -- Bansal, Mukul S -- Carles, Annaick -- Dixon, Jesse R -- Farh, Kai-How -- Feizi, Soheil -- Karlic, Rosa -- Kim, Ah-Ram -- Kulkarni, Ashwinikumar -- Li, Daofeng -- Lowdon, Rebecca -- Elliott, GiNell -- Mercer, Tim R -- Neph, Shane J -- Onuchic, Vitor -- Polak, Paz -- Rajagopal, Nisha -- Ray, Pradipta -- Sallari, Richard C -- Siebenthall, Kyle T -- Sinnott-Armstrong, Nicholas A -- Stevens, Michael -- Thurman, Robert E -- Wu, Jie -- Zhang, Bo -- Zhou, Xin -- Beaudet, Arthur E -- Boyer, Laurie A -- De Jager, Philip L -- Farnham, Peggy J -- Fisher, Susan J -- Haussler, David -- Jones, Steven J M -- Li, Wei -- Marra, Marco A -- McManus, Michael T -- Sunyaev, Shamil -- Thomson, James A -- Tlsty, Thea D -- Tsai, Li-Huei -- Wang, Wei -- Waterland, Robert A -- Zhang, Michael Q -- Chadwick, Lisa H -- Bernstein, Bradley E -- Costello, Joseph F -- Ecker, Joseph R -- Hirst, Martin -- Meissner, Alexander -- Milosavljevic, Aleksandar -- Ren, Bing -- Stamatoyannopoulos, John A -- Wang, Ting -- Kellis, Manolis -- 5R24HD000836/HD/NICHD NIH HHS/ -- ES017166/ES/NIEHS NIH HHS/ -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- P50 MH096890/MH/NIMH NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- R01HG004037-S1/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- RF1 AG015819/AG/NIA NIH HHS/ -- T32 ES007032/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 ES017154/ES/NIEHS NIH HHS/ -- U01AG46152/AG/NIA NIH HHS/ -- U01DA025956/DA/NIDA NIH HHS/ -- U01ES017154/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U01ES017156/ES/NIEHS NIH HHS/ -- U01ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA. ; Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA. ; Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA. ; Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA. ; Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. ; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA. ; ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA. ; Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA. ; 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA. ; USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China. ; National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Lineage/genetics ; Cells, Cultured ; Chromatin/chemistry/genetics/metabolism ; Chromosomes, Human/chemistry/genetics/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation ; Datasets as Topic ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Histones/metabolism ; Humans ; Organ Specificity/genetics ; RNA/genetics ; Reference Values
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Araya, Carlos L -- Kawli, Trupti -- Kundaje, Anshul -- Jiang, Lixia -- Wu, Beijing -- Vafeados, Dionne -- Terrell, Robert -- Weissdepp, Peter -- Gevirtzman, Louis -- Mace, Daniel -- Niu, Wei -- Boyle, Alan P -- Xie, Dan -- Ma, Lijia -- Murray, John I -- Reinke, Valerie -- Waterston, Robert H -- Snyder, Michael -- England -- Nature. 2015 Dec 3;528(7580):152. doi: 10.1038/nature16075. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560031" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...