ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Abscisic acid ; 9-Aminoacridine fluorescence ; Hordeum (chloroplasts) ; Surface charge density ; Thylakoid membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of in-vivo and in-vitro abscisic acid (ABA) treatments on the surface charge density (σ) of barley (Hordeum vulgare L.) thylakoids were compared using 9-aminoacridine fluorescence. The estimated surface charge density of isolated thylakoid membranes from control (non-treated) barley leaves was-0.065 C · m-2. The net negative surface charge density decreased after application of various concentrations of ABA (10-6, 10-5 M) for 7 d in-vivo, the more pronounced effect being observed at 10-5 M ABA. When ABA was added to the suspension of isolated thylakoids the opposite effect was observed. The average charge density increased in in-vitro-treated thylakoids at 10-5 M ABA to -0.081 C · m-2. The results are discussed in terms of a specific ABA-induced influence of the composition and-or stoicheometry of charged protein complexes within the thylakoid membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthetica 34 (1997), S. 133-135 
    ISSN: 1573-9058
    Keywords: leaf dehydration ; phosphoenolpyruvate carboxylase ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Carbonic anhydrase (CA) activity in wheat leaves changed upon leaf dehydration: it decreased at mild stress (relative water content, RWC, 81 %), but increased at severe water stress (RWC 74 %). Phosphoenopyruvate carboxylase activity was not significantly affected by these stresses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthetica 36 (1999), S. 631-634 
    ISSN: 1573-9058
    Keywords: intercellular CO2 concentration ; net photosynthetic rate ; plant hormones ; stomatal conductance ; Pisum sativum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Short-term (2 h) treatment with 10 µM abscisic acid decreased stomatal conductance and net photosynthetic rate, and increased carbonic anhydrase activity in pea seedlings. The treatment with 10 µM methyl jasmonate did not significantly affect these parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-04
    Description: Article Gradients of the secreted morphogen Sonic Hedgehog (Shh) pattern the neural tube in vertebrates. Cohen et al. quantify Shh signalling in developing mice, and by constructing a computational model of the process, identify mechanisms by which the dynamics of Shh signalling are regulated. Nature Communications doi: 10.1038/ncomms7709 Authors: Michael Cohen, Anna Kicheva, Ana Ribeiro, Robert Blassberg, Karen M. Page, Chris P. Barnes, James Briscoe
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-01-27
    Description: In the developing fly wing, secreted morphogens such as Decapentaplegic (Dpp) and Wingless (Wg) form gradients of concentration providing positional information. Dpp forms a longer-range gradient than Wg. To understand how the range is controlled, we measured the four key kinetic parameters governing morphogen spreading: the production rate, the effective diffusion coefficient, the degradation rate, and the immobile fraction. The four parameters had different values for Dpp versus Wg. In addition, Dynamin-dependent endocytosis was required for spreading of Dpp, but not Wg. Thus, the cellular mechanisms of Dpp and Wingless spreading are different: Dpp spreading requires endocytic, intracellular trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kicheva, Anna -- Pantazis, Periklis -- Bollenbach, Tobias -- Kalaidzidis, Yannis -- Bittig, Thomas -- Julicher, Frank -- Gonzalez-Gaitan, Marcos -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):521-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255514" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Diffusion ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/growth & development/*metabolism ; Endocytosis ; Fluorescence Recovery After Photobleaching ; Kinetics ; Mathematics ; Proto-Oncogene Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Temperature ; Wings, Animal/*growth & development/*metabolism ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-10
    Description: Morphogens, such as Decapentaplegic (Dpp) in the fly imaginal discs, form graded concentration profiles that control patterning and growth of developing organs. In the imaginal discs, proliferative growth is homogeneous in space, posing the conundrum of how morphogen concentration gradients could control position-independent growth. To understand the mechanism of proliferation control by the Dpp gradient, we quantified Dpp concentration and signaling levels during wing disc growth. Both Dpp concentration and signaling gradients scale with tissue size during development. On average, cells divide when Dpp signaling levels have increased by 50%. Our observations are consistent with a growth control mechanism based on temporal changes of cellular morphogen signaling levels. For a scaling gradient, this mechanism generates position-independent growth rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wartlick, O -- Mumcu, P -- Kicheva, A -- Bittig, T -- Seum, C -- Julicher, F -- Gonzalez-Gaitan, M -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1154-9. doi: 10.1126/science.1200037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Faculty of Sciences, Geneva University, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; *Cell Proliferation ; Computer Simulation ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/genetics/*growth & development/*metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Models, Biological ; Morphogenesis ; Mutation ; *Signal Transduction ; Wings, Animal/anatomy & histology/cytology/*growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-10-16
    Description: The spatial organization of cell fates during development involves the interpretation of morphogen gradients by cellular signaling cascades and transcriptional networks. Recent studies use biophysical models, genetics, and quantitative imaging to unravel how tissue-level morphogen behavior arises from subcellular events. Moreover, data from several systems show that morphogen gradients, downstream signaling, and the activity of cell-intrinsic transcriptional networks change dynamically during pattern formation. Studies from Drosophila and now also vertebrates suggest that transcriptional network dynamics are central to the generation of gene expression patterns. Together, this leads to the view that pattern formation is an emergent behavior that results from the coordination of events occurring across molecular, cellular, and tissue scales. The development of novel approaches to study this complex process remains a challenge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kicheva, Anna -- Cohen, Michael -- Briscoe, James -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):210-2. doi: 10.1126/science.1225182.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*genetics ; Drosophila/embryology/genetics ; *Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-27
    Description: Development requires tissue growth as well as cell diversification. To address how these processes are coordinated, we analyzed the development of molecularly distinct domains of neural progenitors in the mouse and chick neural tube. We show that during development, these domains undergo changes in size that do not scale with changes in overall tissue size. Our data show that domain proportions are first established by opposing morphogen gradients and subsequently controlled by domain-specific regulation of differentiation rate but not differences in proliferation rate. Regulation of differentiation rate is key to maintaining domain proportions while accommodating both intra- and interspecies variations in size. Thus, the sequential control of progenitor specification and differentiation elaborates pattern without requiring that signaling gradients grow as tissues expand.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kicheva, Anna -- Bollenbach, Tobias -- Ribeiro, Ana -- Valle, Helena Perez -- Lovell-Badge, Robin -- Episkopou, Vasso -- Briscoe, James -- 098326/Wellcome Trust/United Kingdom -- MC_U117560541/Medical Research Council/United Kingdom -- MC_U120074332/Medical Research Council/United Kingdom -- MR/J013331/1/Medical Research Council/United Kingdom -- R01 EB016629/EB/NIBIB NIH HHS/ -- U117560541/Medical Research Council/United Kingdom -- WT098326MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1254927. doi: 10.1126/science.1254927.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. ; Institute of Science and Technology (IST) Austria, Am Campus 1, A - 3400 Klosterneuburg, Austria. ; Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. Imperial College London, UK. ; Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong. Division of Biosciences, Faculty of Life Sciences, University College London, UK. ; Division of Brain Sciences, Faculty of Medicine, Imperial College London, UK. ; Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. jbrisco@nimr.mrc.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; *Cell Differentiation ; Chick Embryo ; Mice ; Models, Biological ; Neural Tube/cytology/*embryology ; Spinal Cord/*embryology ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-01
    Print ISSN: 2405-4712
    Electronic ISSN: 2405-4720
    Topics: Biology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-30
    Description: Like many developing tissues, the vertebrate neural tube is patterned by antiparallel morphogen gradients. To understand how these inputs are interpreted, we measured morphogen signaling and target gene expression in mouse embryos and chick ex vivo assays. From these data, we derived and validated a characteristic decoding map that relates morphogen input to the positional identity of neural progenitors. Analysis of the observed responses indicates that the underlying interpretation strategy minimizes patterning errors in response to the joint input of noisy opposing gradients. We reverse-engineered a transcriptional network that provides a mechanistic basis for the observed cell fate decisions and accounts for the precision and dynamics of pattern formation. Together, our data link opposing gradient dynamics in a growing tissue to precise pattern formation.
    Keywords: Neuroscience
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...