ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Description / Table of Contents: Thermochronology - the use of temperature-sensitive radiometric dating methods to reconstruct the thermal histories of rocks - has proved to be an important means of constraining a wide variety of geological processes. Fission track and (U–Th)/He analyses of apatites, zircons and titanites are the best-established and most sensitive methods for reconstructing such histories in the uppermost kilometres of the crust, over time scales of millions to hundreds of millions of years. The papers published in this volume are divided into two sections. The first section on ‘New approaches in thermochronology’, presents the most recent advances of existing thermochronological methods and demonstrates the progress in the development of alternative thermochronometers and modelling techniques. The second section, ‘Applied thermochronology’, comprises original papers about denudation, long-term landscape evolution and detrital sources from the European Alps, northwestern Spain, the Ardennes, the Bohemian Massif, Fennoscandia and Corsica. It also includes case studies from the Siberian Altai, Mozambique, South Africa and Dronning Maud Land (East Antarctica) and reports an ancient thermal anomaly within a regional fault in Japan.
    Pages: Online-Ressource (VII, 347 Seiten)
    ISBN: 9781862392854
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-11
    Description: We define here two new classes of saturated fusion systems: reduced fusion systems and tame fusion systems. These are motivated by our attempts to better understand and search for exotic fusion systems: fusion systems which are not the fusion systems of any finite group. Our main theorems say that every saturated fusion system reduces to a reduced fusion system which is tame only if the original one is realizable and that every reduced fusion system which is not tame is the reduction of some exotic (nonrealizable) fusion system.
    Print ISSN: 0024-6115
    Electronic ISSN: 1460-244X
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-16
    Description: Author(s): P. M. M. Leal, C. J. A. P. Martins, and L. B. Ventura Astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α, are an area of much increased recent activity, following some indications of possible spacetime variations at the few parts per million level. Here we obtain updated constraints on the... [Phys. Rev. D 90, 027305] Published Tue Jul 15, 2014
    Keywords: Astrophysics & Cosmology
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-25
    Description: CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Sacha, Jonah B -- Hughes, Colette M -- Ford, Julia C -- Burwitz, Benjamin J -- Scholz, Isabel -- Gilbride, Roxanne M -- Lewis, Matthew S -- Gilliam, Awbrey N -- Ventura, Abigail B -- Malouli, Daniel -- Xu, Guangwu -- Richards, Rebecca -- Whizin, Nathan -- Reed, Jason S -- Hammond, Katherine B -- Fischer, Miranda -- Turner, John M -- Legasse, Alfred W -- Axthelm, Michael K -- Edlefsen, Paul T -- Nelson, Jay A -- Lifson, Jeffrey D -- Fruh, Klaus -- Picker, Louis J -- P01 AI094417/AI/NIAID NIH HHS/ -- P51 OD 011092/OD/NIH HHS/ -- R01 AI059457/AI/NIAID NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 May 24;340(6135):1237874. doi: 10.1126/science.1237874.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Cytokines/immunology ; Cytomegalovirus/genetics/*immunology ; Epitopes, T-Lymphocyte/*immunology ; Female ; Genetic Vectors/genetics/*immunology ; Histocompatibility Antigens Class II/immunology ; Humans ; Macaca mulatta ; Male ; Membrane Glycoproteins/genetics ; SAIDS Vaccines/administration & dosage/*immunology ; Viral Envelope Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-13
    Description: The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (〉/=1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Ford, Julia C -- Lewis, Matthew S -- Ventura, Abigail B -- Hughes, Colette M -- Coyne-Johnson, Lia -- Whizin, Nathan -- Oswald, Kelli -- Shoemaker, Rebecca -- Swanson, Tonya -- Legasse, Alfred W -- Chiuchiolo, Maria J -- Parks, Christopher L -- Axthelm, Michael K -- Nelson, Jay A -- Jarvis, Michael A -- Piatak, Michael Jr -- Lifson, Jeffrey D -- Picker, Louis J -- HHSN261200800001E/PHS HHS/ -- HHSN272200900037C/PHS HHS/ -- P51 RR00163/RR/NCRR NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- R01 AI060392-05/AI/NIAID NIH HHS/ -- R24 RR016001/RR/NCRR NIH HHS/ -- R56 AI060392/AI/NIAID NIH HHS/ -- R56 AI060392-06/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- England -- Nature. 2011 May 26;473(7348):523-7. doi: 10.1038/nature10003. Epub 2011 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute, Department of Molecular Microbiology, Oregon Health & Science University, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21562493" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Animals ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cytomegalovirus/genetics ; DNA, Viral/analysis ; Genetic Vectors/genetics ; Immunity, Mucosal/immunology ; Immunologic Memory/*immunology ; Macaca mulatta/blood/immunology/virology ; Male ; RNA, Viral/analysis ; SAIDS Vaccines/genetics/*immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & ; control/virology ; Simian Immunodeficiency Virus/growth & development/*immunology/isolation & ; purification/*pathogenicity ; T-Lymphocytes/*immunology ; Time Factors ; Vaccines, DNA/genetics/immunology ; Viral Load ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-13
    Description: Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Piatak, Michael Jr -- Ventura, Abigail B -- Hughes, Colette M -- Gilbride, Roxanne M -- Ford, Julia C -- Oswald, Kelli -- Shoemaker, Rebecca -- Li, Yuan -- Lewis, Matthew S -- Gilliam, Awbrey N -- Xu, Guangwu -- Whizin, Nathan -- Burwitz, Benjamin J -- Planer, Shannon L -- Turner, John M -- Legasse, Alfred W -- Axthelm, Michael K -- Nelson, Jay A -- Fruh, Klaus -- Sacha, Jonah B -- Estes, Jacob D -- Keele, Brandon F -- Edlefsen, Paul T -- Lifson, Jeffrey D -- Picker, Louis J -- HHSN261200800001E/PHS HHS/ -- P01 AI094417/AI/NIAID NIH HHS/ -- P51OD011092/OD/NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- R01 DE021291/DE/NIDCR NIH HHS/ -- R37 AI054292/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096109/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- U42 OD010426/OD/NIH HHS/ -- England -- Nature. 2013 Oct 3;502(7469):100-4. doi: 10.1038/nature12519. Epub 2013 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytomegalovirus/genetics/immunology ; Female ; Macaca mulatta ; Male ; Molecular Sequence Data ; SAIDS Vaccines/*immunology ; Simian Acquired Immunodeficiency Syndrome/*prevention & control/virology ; Simian Immunodeficiency Virus/*immunology ; Time Factors ; Vaccines, Attenuated/immunology ; Viral Load ; Virus Replication/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-04-03
    Description: Cytomegalovirus (CMV) can superinfect persistently infected hosts despite CMV-specific humoral and cellular immunity; however, how it does so remains undefined. We have demonstrated that superinfection of rhesus CMV-infected rhesus macaques (RM) requires evasion of CD8+ T cell immunity by virally encoded inhibitors of major histocompatibility complex class I (MHC-I) antigen presentation, particularly the homologs of human CMV US2, 3, 6, and 11. In contrast, MHC-I interference was dispensable for primary infection of RM, or for the establishment of a persistent secondary infection in CMV-infected RM transiently depleted of CD8+ lymphocytes. These findings demonstrate that US2-11 glycoproteins promote evasion of CD8+ T cells in vivo, thus supporting viral replication and dissemination during superinfection, a process that complicates the development of preventive CMV vaccines but that can be exploited for CMV-based vector development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Powers, Colin J -- Richards, Rebecca -- Ventura, Abigail B -- Ford, Julia C -- Siess, Don -- Axthelm, Michael K -- Nelson, Jay A -- Jarvis, Michael A -- Picker, Louis J -- Fruh, Klaus -- AI040101/AI/NIAID NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- P51 RR000163-460222/RR/NCRR NIH HHS/ -- P51 RR000163-486829/RR/NCRR NIH HHS/ -- P51 RR000163-496081/RR/NCRR NIH HHS/ -- P51 RR000163-508648/RR/NCRR NIH HHS/ -- R01 AI021640/AI/NIAID NIH HHS/ -- R01 AI021640-26/AI/NIAID NIH HHS/ -- R01 AI059457/AI/NIAID NIH HHS/ -- R01 AI059457-01A2/AI/NIAID NIH HHS/ -- R01 AI059457-02/AI/NIAID NIH HHS/ -- R01 AI059457-03/AI/NIAID NIH HHS/ -- R01 AI059457-04/AI/NIAID NIH HHS/ -- R01 AI059457-05/AI/NIAID NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- RR00163/RR/NCRR NIH HHS/ -- RR016001/RR/NCRR NIH HHS/ -- RR016025/RR/NCRR NIH HHS/ -- RR18107/RR/NCRR NIH HHS/ -- T32 AI007472/AI/NIAID NIH HHS/ -- T32 HL007781/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):102-6. doi: 10.1126/science.1185350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360110" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/*immunology ; Cytomegalovirus/genetics/immunology/*physiology ; Cytomegalovirus Infections/*immunology/*virology ; Cytomegalovirus Vaccines/immunology ; Disease Models, Animal ; Gene Products, gag/immunology ; Genes, Viral ; Histocompatibility Antigens Class I/immunology ; *Immune Evasion ; Immunologic Factors/genetics/*physiology ; Macaca mulatta ; Male ; Simian Immunodeficiency Virus/genetics/immunology ; Superinfection ; Viral Proteins/genetics/*physiology ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-23
    Description: Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8alphabeta(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Wu, Helen L -- Burwitz, Benjamin J -- Hughes, Colette M -- Hammond, Katherine B -- Ventura, Abigail B -- Reed, Jason S -- Gilbride, Roxanne M -- Ainslie, Emily -- Morrow, David W -- Ford, Julia C -- Selseth, Andrea N -- Pathak, Reesab -- Malouli, Daniel -- Legasse, Alfred W -- Axthelm, Michael K -- Nelson, Jay A -- Gillespie, Geraldine M -- Walters, Lucy C -- Brackenridge, Simon -- Sharpe, Hannah R -- Lopez, Cesar A -- Fruh, Klaus -- Korber, Bette T -- McMichael, Andrew J -- Gnanakaran, S -- Sacha, Jonah B -- Picker, Louis J -- HHSN272201100013C/AI/NIAID NIH HHS/ -- HHSN272201100013C/PHS HHS/ -- P01 AI094417/AI/NIAID NIH HHS/ -- P01-AI094417/AI/NIAID NIH HHS/ -- P50-GM065794/GM/NIGMS NIH HHS/ -- P51 OD011092/OD/NIH HHS/ -- P51-OD011092/OD/NIH HHS/ -- R01 AI059457/AI/NIAID NIH HHS/ -- R01 AI095113/AI/NIAID NIH HHS/ -- R01 AI117802/AI/NIAID NIH HHS/ -- R01 DE021291/DE/NIDCR NIH HHS/ -- R01-AI059457/AI/NIAID NIH HHS/ -- R01-AI095113/AI/NIAID NIH HHS/ -- R01-AI117802/AI/NIAID NIH HHS/ -- R01-DE021291/DE/NIDCR NIH HHS/ -- R37 AI054292/AI/NIAID NIH HHS/ -- R37-AI054292/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- U24-OD010850/OD/NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- UM1-AI100645-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):714-20. doi: 10.1126/science.aac9475. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA. ; Nuffield Department of Medicine, University of Oxford, Oxford OX37FZ, UK. ; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. ; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. The New Mexico Consortium, Los Alamos, NM 87545, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigenic Variation ; CD8-Positive T-Lymphocytes/*immunology ; Cytomegalovirus/genetics/*immunology ; Epitopes, T-Lymphocyte/chemistry/*immunology ; Genetic Vectors/genetics/immunology ; Histocompatibility Antigens Class I/chemistry/*immunology ; Host-Pathogen Interactions/immunology ; Immune Evasion ; Killer Cells, Natural/immunology ; Macaca mulatta ; Protein Structure, Secondary ; Simian Immunodeficiency Virus/*immunology ; Vaccination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-25
    Description: Author(s): G. B. Ventura, D. J. Passos, J. M. B. Lopes dos Santos, J. M. Viana Parente Lopes, and N. M. R. Peres The formalism of the reduced density matrix is pursued in both length and velocity gauges of the perturbation to the crystal Hamiltonian. The covariant derivative is introduced as a convenient representation of the position operator. This allow us to write compact expressions for the reduced density... [Phys. Rev. B 96, 035431] Published Mon Jul 24, 2017
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-28
    Description: Author(s): D. J. Passos, G. B. Ventura, J. M. Viana Parente Lopes, J. M. B. Lopes dos Santos, and N. M. R. Peres In this work, the difficulties inherent to perturbative calculations in the velocity gauge are addressed. In particular, it is shown how calculations of nonlinear optical responses in the independent particle approximation can be done to any order and for any finite band model. The procedure and adv... [Phys. Rev. B 97, 235446] Published Wed Jun 27, 2018
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...