ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-06-07
    Description: Few suitable stars behind molecular clouds have been identified. A limited survey was performed of interstellar lines toward highly reddened stars in the southern sky, using the ESO 1.4 m CAT telescope with a Reticon detector, and the Cerro Tololo 4 m telescope equipped with a GEC charge coupled device (CCD) detector. Because of the reduced extinction at longer wavelengths, molecules were searched for with transitions in the red part of the spectrum such as C2 and CN. For some lines-of-sight for which C2 was detected, the 4300 A line of CH was also observed. Absorption lines of interstellar C2 around 8750 A were detected in the spectra of about 1/4 of the 36 observed stars. The inferred C2 column densities range between 10 to the 13th power and 10 to the 14th power sq. cm., and are up to an order of magnitude larger than those found for diffuse clouds. The observed column densities of CH correlate very well with those of C2 over this range. In contrast, the measured column densities of CN vary by orders of magnitude between the various regions, and they do not correlate with those of C2 and CH. The observed rotational population distribution of C2 also provides information about the physical conditions in the clouds. Models of translucent molecular clouds have been constructed along the lines described by van Dishoeck and Black (1986) for diffuse clouds. The models compute accurately the fractions of atomic and molecular hydrogen as functions of depth into the clouds, as well as the excitation of H2 by ultraviolet pumping. They also incorporate a detailed treatment of the photodissociation processes of the molecules (cf. van Dishoeck 1986), which play an important role in the chemistry up to depths of about 3 mag.
    Keywords: ASTROPHYSICS
    Type: NASA. Ames Research Center Summer School on Intestellar Processes: Abstracts of Contributed Papers; p 149-150
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Molecular oxygen and nitrogen are difficult to observe since they are infrared inactive and radio quiet. The low O2 abundances found so far combined with general considerations of dense cloud conditions suggest molecular oxygen is frozen out at low temperatures (〈 20 K) in the shielded inner regions of cloud cores. In solid form O2 and N2 can only be observed as adjuncts within other ice constituents, like CO. In this work we focus on fundamental properties of N2 and O2 in CO ice-gas systems, e.g. desorption characteristics and sticking probabilities at low temperatures for different ice morphologies.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 73-76; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.
    Keywords: Astronomy
    Type: Rept-2000-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...